The VIPs of the nervous system—a tiny population of neurons holds a master key to the body's clock

July 12, 2018, Washington University in St. Louis
Credit: CC0 Public Domain

Travel by airplane has opened the door to experiencing different cultures and exploring natural wonders. That is, if you can get past the jet lag.

But what if you could take control of the brain's daily timing system? Biologists at Washington University in St Louis unlocked a cure for jet lag in mice by activating a small subset of the involved in setting daily rhythms, to be reported in a July 12 advance online publication of Neuron.

All essential body functions are highly synchronized with local time by the body's daily, or circadian, clock. A small spot at the very bottom of the brain, close to the roof of the mouth, reminds us to wake up and go to sleep at a regular time each day. This master clock is referred to as the suprachiasmatic nucleus, or SCN.

When this system is disturbed—by shift work or crossing time zones, for example—the 20,000 neurons in the SCN struggle to adjust the body to the new schedule. Stimulating just 10 percent of these neurons to fire with the right pattern of electrical activity caused mice to rapidly shift to the new daily schedule, the researchers found.

"Just like your watch is good at keeping time but is useless unless you can set it to local time," said Erik Herzog, professor of biology in Arts & Sciences, "we wondered how the body clock adjusts to its local time."

Herzog and his lab suspected a small subset of SCN neurons are involved because it produces vasoactive intestinal polypeptide or VIP, an essential compound that neurons use to communicate and synchronize their daily rhythms with one another.

"We hypothesized that VIP neurons are like the grandmothers who are in charge of telling everyone what to do," Herzog said. There are only about 2,000 VIP neurons in the SCN of people and mice.

To test this idea, Cristina Mazuski, a graduate student in the Herzog lab, first developed a way to characterize the normal daily firing patterns of VIP neurons.

Recording the millisecond-long action potentials from a set of neurons, they were able to identify two classes of VIP neurons. Tonic VIP neurons fired at a steady pace with equally spaced intervals between each firing episode and VIP irregular neurons fired in doublets or triplets with equally spaced intervals after each doublet or triplet.

The researchers then tested whether activation of VIP neurons would shift the daily schedule of the SCN and the mice.

To conduct the experiment, researchers kept mice in total darkness all day and all night with no environmental clues about what time it was. Using a tool called optogenetics, they activated only the VIP neurons at the same time every day, a procedure that mimicked flying to a new time zone.

"This was an important step to understand how the SCN keeps organisms synced to their local light schedule," Mazuski said.

Testing the different firing patterns of VIP neurons, researchers found that mice got over jet lag faster when VIP neurons were activated to irregularly fire. The were slower to adjust to the new local time when their VIP neurons were excited with tonic patterns.

"We found the irregular pattern causes VIP neurons to release VIP," Herzog said. "VIP, we think, is the juice that is capable of shifting the clock faster."

"We are really starting to understand how the timing system in the brain is wired together, and found that the code used by VIP neurons is really key to setting our daily schedule," Herzog said.

In the future, the researchers hope to learn ways to encourage VIP neurons to release their VIP to pick the clock's lock and reduce jet lag for human travelers and shift workers.

Explore further: Biological clocks orchestrate behavioral rhythms by sending signals downstream

More information: Neuron (2018). DOI: 10.1016/j.neuron.2018.06.029

Related Stories

Biological clocks orchestrate behavioral rhythms by sending signals downstream

February 29, 2016
Different groups of neurons program biological clocks to orchestrate our behaviors by sending messages in a unidirectional manner downstream, a team of biologists has found.

Study locates circadian clock that controls daily rhythms of aggression

April 9, 2018
Patients with Alzheimer's disease and other forms of dementia commonly experience the sundown syndrome - a sudden worsening of confusion, agitation and aggression at the end of the day. Its daily pattern suggested that "sundowning," ...

Research team maps wiring of biological clock

June 5, 2013
The World Health Organization lists shift work as a potential carcinogen, says Erik Herzog, PhD, Professor of Biology in Arts & Sciences at Washington University in St. Louis. And that's just one example among many of the ...

Astrocytes found to keep time for brain, behavior

March 24, 2017
Until recently, work on biological clocks that dictate daily fluctuations in most body functions, including core body temperature and alertness, focused on neurons, those electrically excitable cells that are the divas of ...

Recommended for you

Study of protein 'trafficker' provides insight into autism and other brain disorders

September 22, 2018
In the brain, as in business, connections are everything. To maintain cellular associates, the outer surface of a neuron, its membrane, must express particular proteins—proverbial hands that reach out and greet nearby cells. ...

Breast milk may be best for premature babies' brain development

September 21, 2018
Babies born before their due date show better brain development when fed breast milk rather than formula, a study has found.

Early warning sign of psychosis detected

September 21, 2018
Brains of people at risk of psychosis exhibit a pattern that can help predict whether they will go on to develop full-fledged schizophrenia, a new Yale-led study shows. The findings could help doctors begin early intervention ...

White matter repair and traumatic brain injury

September 20, 2018
Traumatic brain injury (TBI) is a leading cause of death and disability in the U.S., contributing to about 30 percent of all injury deaths, according to the CDC. TBI causes damage to both white and gray matter in the brain, ...

Gut branches of vagus nerve essential components of brain's reward and motivation system

September 20, 2018
A novel gut-to-brain neural circuit establishes the vagus nerve as an essential component of the brain system that regulates reward and motivation, according to research conducted at the Icahn School of Medicine at Mount ...

Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018
Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.