Structure of tau filaments in patients with Pick's disease determined

August 30, 2018 by Bob Yirka, Medical Xpress report
Tau Protein. Credit: Jawahar Swaminathan and MSD staff at the European Bioinformatics Institute

A team of researchers with the MRC Laboratory of Molecular Biology in the U.K. and Indiana University School of Medicine in the U.S. has determined the structure of tau filaments in patients with Pick's disease. In their paper published in the journal Nature, the group describes the technique and technology they used to discover the shape of the folds in the brain and what they found.

Neurological diseases are often characterized by misfolded tau proteins in the brain that lead to the destruction of neurons. Prior research has led to the discovery that there are six tau shapes in the human brain, and all of them are essential for normal neuronal activity. For unknown reasons, these proteins sometimes fold improperly, which leads to a cascading effect in which more become misfolded—such cascades are referred to as filaments, and the cascading effect is what leads to degeneration of neurons, and in most patients, death from neurological disease. The researchers with this new effort have been working to determine the structure of the misfolds involved in such diseases, hoping to an understand why proteins misfold, and perhaps find a way to stop it from happening. Recently, they announced that they had determined the structure of tau filaments associated with Alzheimer's disease. In this new effort, they have now done the same with Pick's disease—a degenerative neurological disease that results in destruction of neurons in the .

Tau proteins can have a structure made up of either three or four microtubule-binding repeats, and filaments can have either or both structures. The researchers discovered that such filaments associated with Pick's disease had just three repeats, and that they were novel in shape and distinct from those found in patients with Alzheimer's disease. The technique involved using electron cryomicroscopy, in which samples were cooled to cryogenic temperatures and then examined with an electron microscope. The finding offers evidence to back up a theory that suggests the differences in are likely due to differences in structures.

Explore further: Scientists uncover the structure of tau filaments from Alzheimer's disease

More information: Benjamin Falcon et al. Structures of filaments from Pick's disease reveal a novel tau protein fold, Nature (2018). DOI: 10.1038/s41586-018-0454-y

Abstract
The ordered assembly of tau protein into abnormal filamentous inclusions underlies many human neurodegenerative diseases. Tau assemblies seem to spread through specific neural networks in each disease, with short filaments having the greatest seeding activity. The abundance of tau inclusions strongly correlates with disease symptoms4. Six tau isoforms are expressed in the normal adult human brain—three isoforms with four microtubule-binding repeats each (4R tau) and three isoforms that lack the second repeat (3R tau). In various diseases, tau filaments can be composed of either 3R or 4R tau, or of both. Tau filaments have distinct cellular and neuroanatomical distributions5, with morphological and biochemical differences suggesting that they may be able to adopt disease-specific molecular conformations. Such conformers may give rise to different neuropathological phenotypes, reminiscent of prion strains10. However, the underlying structures are not known. Using electron cryo-microscopy, we recently reported the structures of tau filaments from patients with Alzheimer's disease, which contain both 3R and 4R tau. Here we determine the structures of tau filaments from patients with Pick's disease, a neurodegenerative disorder characterized by frontotemporal dementia. The filaments consist of residues Lys254–Phe378 of 3R tau, which are folded differently from the tau filaments in Alzheimer's disease, establishing the existence of conformers of assembled tau. The observed tau fold in the filaments of patients with Pick's disease explains the selective incorporation of 3R tau in Pick bodies, and the differences in phosphorylation relative to the tau filaments of Alzheimer's disease. Our findings show how tau can adopt distinct folds in the human brain in different diseases, an essential step for understanding the formation and propagation of molecular conformers.

Related Stories

Scientists uncover the structure of tau filaments from Alzheimer's disease

July 6, 2017
Researchers at the MRC Laboratory of Molecular Biology (LMB) have, for the first time, revealed the atomic structures of one of the two types of the abnormal filaments which lead to Alzheimer's disease. Understanding the ...

Study identifies chaperone protein implicated in Parkinson's disease

August 13, 2018
Reduced levels of a chaperone protein might have implications for the development and progression of neurodegenerative diseases such as Parkinson's disease and Lewy body dementia, according to new research from investigators ...

Overlapping mechanisms in HIV cognitive disorders and Alzheimer's disease

April 9, 2018
A protein involved in Alzheimer's disease (AD) may be a promising target for treating neurological disorders in human immunodeficiency virus (HIV) patients, suggests a study published in JNeurosci of rat neurons and brain ...

Rare, lethal childhood disease tracked to protein

April 29, 2013
A team of international researchers led by Northwestern Medicine scientists has identified how a defective protein plays a central role in a rare, lethal childhood disease known as Giant Axonal Neuropathy, or GAN. The finding ...

Recommended for you

Use of electrical brain stimulation to foster creativity has sweeping implications

September 18, 2018
What is creativity, and can it be enhanced—safely—in a person who needs a boost of imagination? Georgetown experts debate the growing use of electrical devices that stimulate brain tissue, and conclude there is potential ...

Engineers decode conversations in brain's motor cortex

September 18, 2018
How does your brain talk with your arm? The body doesn't use English, or any other spoken language. Biomedical engineers are developing methods for decoding the conversation, by analyzing electrical patterns in the motor ...

Team identifies brain's lymphatic vessels as new avenue to treat multiple sclerosis

September 17, 2018
Lymphatic vessels that clean the brain of harmful material play a crucial role in the development and progression of multiple sclerosis, new research from the University of Virginia School of Medicine suggests. The vessels ...

Circuit found for brain's statistical inference about motion

September 17, 2018
As the eye tracks a bird flying past, the muscles that pan the eyeballs to keep the target in focus set their pace not only on the speed they see, but also on a reasonable estimate of the speed they expect from having watched ...

Mouse study reveals that activity, not rest, speeds recovery after brain injury

September 17, 2018
When recovering from a brain injury, getting back in the swing of things may be more effective than a prolonged period of rest, according to a new Columbia study in mice. These findings offer a compelling example of the brain's ...

Fine-tuned sense of smell relies on timing

September 17, 2018
If you can tell the difference between a merlot and a cabernet franc just by smell, it's probably all in the timing.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.