Bioadhesive, wirelessly-powered implant emitting light to kill cancer cells

September 10, 2018, Waseda University
The newly-developed, bioadhesive, wirelessly-powered implant. Credit: Dr. Toshinori Fujie, Waseda University

Scientists from Waseda University, the National Defense Medical College, and the Japan Science and Technology Agency have developed a new bioadhesive, wirelessly powered light-emitting device that could better treat cancers in delicate organs.

Conventional induces cancer cell death by using photosensitizing agents, which localize in tumors and activate with exposure to a specific wavelength of light. In recent years, low-dose and long-term metronomic photodynamic therapy (mPDT) has shown promise in treating cancers in internal organs. The problem with mPDT is, however, is that because the light intensity is extremely low (1/1000 of the conventional method), the anti- effect cannot be obtained if the light source shifts even slightly away from the tumor, making the illumination insufficient.

"To address this issue, we have developed a wirelessly powered optoelectronic device that stably fixes itself onto the inner surface of animal tissue like a sticker with bioadhesive and elastic nanosheets, enabling a continuous, local light delivery to the tumor," says Toshinori Fujie, associate professor of biomedical engineering at Waseda University. The nanosheets are modified with the mussel adhesive protein-inspired polymer polydopamine, which can stabilize the device onto a wet for more than 2 weeks without surgical suturing or medical glue. The light-emitting diode chips in the device are wirelessly powered by near-field-communication technology.

To test its effectiveness, tumor-bearing mice implanted with the device were injected with a photosensitizing agent (photofrin) and exposed to red and green light, approximately 1,000-fold intensity lower than the conventional PDT approaches, for 10 consecutive days. The experiment showed that the tumor growth was significantly reduced overall. Especially under green , the tumor in some mice was completely eradicated.

Associate Professor Fujie points out, "This device may facilitate treatment for hard-to-detect microtumors and deeply located lesions that are hard to reach with standard phototherapy, without having to worry about the risk of damaging healthy tissues by overheating. Furthermore, because the device does not require surgical suturing, it is suitable for treating cancer near major nerves and blood vessels, as well as for organs that are fragile, that change their shape, or that actively move, such as the brain, liver, and pancreas."

If clinically applied, the device could be beneficial for patients who seek minimally invasive treatment, helping them live longer and improve their quality of life.

Explore further: Researchers develop wireless light switch for targeted cancer therapy

More information: Kento Yamagishi et al, Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy, Nature Biomedical Engineering (2018). DOI: 10.1038/s41551-018-0261-7

Related Stories

Researchers develop wireless light switch for targeted cancer therapy

January 31, 2018
A team of scientists from the National University of Singapore (NUS) has developed a way to wirelessly deliver light into deep regions of the body to activate light-sensitive drugs for photodynamic therapy (PDT).

An easier, safer, and more accurate treatment for pancreatic cancer

April 2, 2014
Using CT scans with contrast enhancement, Dartmouth researchers measured treatment response to pancreatic cancer photodynamic therapy (PDT) according to a paper published in Physics in Medicine and Biology.

Multifunctional fluorescent nanoparticles for cancer surgery show promise

November 14, 2017
Even with pre-operative imaging techniques, surgeons still rely on visual inspection to locate malignant tissues during surgery. New research released today at the 2017 American Association of Pharmaceutical Scientists (AAPS) ...

Successful laboratory test of photoswitchable anti-tumor agent

April 22, 2016
Photoswitchable agents might reduce side effects of a chemotherapy. So far, photodynamic therapies have been dependent on oxygen in the tissue. But hardly any oxygen exists in malignant, rapidly growing tumors. A group of ...

Researchers developing a biomedical device that can find and destroy cancer cells

December 23, 2014
To examine internal organs, doctors often use a tube with light and a tiny camera attached to it. The device, called an endoscope, helps detect cancer and other illnesses.

Treating cancer with light: New LED device may help advance photodynamic therapy

October 18, 2010
Can skin cancer be treated with light? Scientists at the University of California, Irvine (UC Irvine), believe so. They're exploring new ways to image cancerous lesions using LEDs that might advance a technique for treating ...

Recommended for you

Immunotherapy combo not approved for advanced kidney cancer patients on the NHS

December 14, 2018
People with a certain type of advanced kidney cancer will not be able to have a combination of two immunotherapy drugs on the NHS in England.

New drug seeks receptors in sarcoma cells, attacks tumors in animal trials

December 13, 2018
A new compound that targets a receptor within sarcoma cancer cells shrank tumors and hampered their ability to spread in mice and pigs, a study from researchers at the University of Illinois reports.

Surgery unnecessary for many prostate cancer patients

December 13, 2018
Otherwise healthy men with advanced prostate cancer may benefit greatly from surgery, but many with this diagnosis have no need for it. These conclusions were reached by researchers after following a large group of Scandinavian ...

Combining three treatment strategies may significantly improve melanoma treatment

December 12, 2018
A study by a team led by a Massachusetts General Hospital (MGH) investigator finds evidence that combining three advanced treatment strategies for malignant melanoma—molecular targeted therapy, immune checkpoint blockade ...

Researchers use computer model to predict prostate cancer progression

December 12, 2018
An international team of cancer researchers from Denmark and Germany have used cancer patient data to develop a computer model that can predict the progression of prostate cancer. The model is currently being implemented ...

New insight into stem cell behaviour highlights therapeutic target for cancer treatment

December 12, 2018
Research led by the University of Plymouth and Technische Universität Dresden has identified a new therapeutic target for cancer treatment and tissue regeneration – a protein called Prominin-1.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.