Medical research

Study shows mouse cerebellum quite different from human

An international team of researchers has found that the mouse cerebellum may not be a good model for the human cerebellum in brain studies. In their study published in the journal Science, the group describes their comparison ...

Neuroscience

Scientists map our underappreciated 'little brain'

Scientists at UC Berkeley and Western University in Canada have used brain imaging to map the cerebellum, a formerly underappreciated neural region that contains the vast majority of the brain's neurons, hence its Latin moniker ...

Neuroscience

An artificial cerebellum that also learns to blink

The Human Brain Project (HBP) aims to help fields such as medicine and neuroscience to advance more easily. CerebNEST is an associated project of the HBP that focuses on the study of the brain region related to movement: ...

Neuroscience

Making moves to understand cognitive function in the brain

It is known that certain areas of the brain are responsible for certain functions of the body. The cerebellum, a structure found in the back of the skull, is known to be important for the control of movement, while the frontal ...

Neuroscience

Mind's quality control center found in long-ignored brain area

The cerebellum can't get no respect. Located inconveniently on the underside of the brain and initially thought to be limited to controlling movement, the cerebellum has long been treated like an afterthought by researchers ...

page 1 from 9

Cerebellum

The cerebellum (Latin for little brain) is a region of the brain that plays an important role in motor control. It may also be involved in some cognitive functions such as attention and language, and in regulating fear and pleasure responses, but its movement-related functions are the most solidly established. The cerebellum does not initiate movement, but it contributes to coordination, precision, and accurate timing. It receives input from sensory systems and from other parts of the brain and spinal cord, and integrates these inputs to fine tune motor activity. Because of this fine-tuning function, damage to the cerebellum does not cause paralysis, but instead produces disorders in fine movement, equilibrium, posture, and motor learning.

In terms of anatomy, the cerebellum has the appearance of a separate structure attached to the bottom of the brain, tucked underneath the cerebral hemispheres. The surface of the cerebellum is covered with finely spaced parallel grooves, in striking contrast to the broad irregular convolutions of the cerebral cortex. These parallel grooves conceal the fact that the cerebellum is actually a continuous thin layer of tissue (the cerebellar cortex), tightly folded in the style of an accordion. Within this thin layer are several types of neurons with a highly regular arrangement, the most important being Purkinje cells and granule cells. This complex neural network gives rise to a massive signal-processing capability, but almost all of its output is directed to a set of small deep cerebellar nuclei lying in the interior of the cerebellum.

In addition to its direct role in motor control, the cerebellum also is necessary for several types of motor learning, the most notable one being learning to adjust to changes in sensorimotor relationships. Several theoretical models have been developed to explain sensorimotor calibration in terms of synaptic plasticity within the cerebellum. Most of them derive from early models formulated by David Marr and James Albus, which were motivated by the observation that each cerebellar Purkinje cell receives two dramatically different types of input: On one hand, thousands of inputs from parallel fibers, each individually very weak; on the other hand, input from one single climbing fiber, which is, however, so strong that a single climbing fiber action potential will reliably cause a target Purkinje cell to fire a burst of action potentials. The basic concept of the Marr-Albus theory is that the climbing fiber serves as a "teaching signal", which induces a long-lasting change in the strength of synchronously activated parallel fiber inputs. Observations of long-term depression in parallel fiber inputs have provided support for theories of this type, but their validity remains controversial.

This text uses material from Wikipedia, licensed under CC BY-SA