Health

Turmeric: Here's how it actually measures up to health claims

Turmeric has been used by humans for more than 4,000 years. As well as cooking and cosmetics, it's been a staple of the traditional medicine practice of Ayurveda, used to treat a variety of conditions from arthritis to wind.

Oncology & Cancer

What to know about supplements and cancer

From vitamin A capsules to herbal teas and zinc tablets, dietary supplements come in all shapes and sizes. But are they a good fit for people with cancer?

Medical research

Discovery could be key to reducing leukemia treatment resistance

In a world first, Newcastle researchers have discovered the mechanisms acute myeloid leukemia (AML) cells use to produce "free radicals"—the byproduct of a cell process that aggressively fuels the growth of cancer cells ...

page 1 from 24

Radical (chemistry)

In chemistry, radicals (often referred to as free radicals) are atoms, molecules, or ions with unpaired electrons on an otherwise open shell configuration. These unpaired electrons are usually highly reactive, so radicals are likely to take part in chemical reactions. Radicals play an important role in combustion, atmospheric chemistry, polymerization, plasma chemistry, biochemistry, and many other chemical processes, including human physiology. For example, superoxide and nitric oxide regulate many biological processes, such as controlling vascular tone. "Radical" and "free radical" are frequently used interchangeably, although a radical may be trapped within a solvent cage or be otherwise bound. The first organic free radical identified was triphenylmethyl radical, by Moses Gomberg in 1900 at the University of Michigan.

Historically, the term radical has also been used for bound parts of the molecule, especially when they remain unchanged in reactions. These are now called functional groups. For example, methyl alcohol was described as consisting of a methyl "radical" and a hydroxyl "radical". Neither are radicals in the modern chemical sense, as they are permanently bound to each other, and have no unpaired, reactive electrons. They can, however, be observed as radicals in mass spectrometry after breaking down the substance with a hail of energetic electrons.

This text uses material from Wikipedia, licensed under CC BY-SA