Radiology & Imaging

This self-powered sensor could make MRIs more efficient

MRI scans are commonly used to diagnose a variety of conditions, anything from liver disease to brain tumors. But, as anyone who has been through one knows, patients must remain completely still to avoid blurring the images ...

Neuroscience

Engineered material can reconnect severed nerves

Researchers have long recognized the therapeutic potential of using magnetoelectrics—materials that can turn magnetic fields into electric fields—to stimulate neural tissue in a minimally invasive way and help treat neurological ...

Diseases, Conditions, Syndromes

Rapid test for COVID-19 shows improved sensitivity

Since the start of the COVID-19 pandemic, researchers at MIT and the Broad Institute of MIT and Harvard, along with their collaborators at the University of Washington, Fred Hutchinson Cancer Research Center, Brigham and ...

Cardiology

Magnetic nanoparticles could stop blood clot-caused strokes

By loading magnetic nanoparticles with drugs and dressing them in biochemical camouflage, Houston Methodist researchers say they can destroy blood clots 100 to 1,000 times faster than a commonly used clot-busting technique.

Cardiology

Tiny magnetic particles may help assess heart treatments

Tiny magnetic particles may help doctors track cells in the body to better determine if treatments work, according to research reported in Circulation: Cardiovascular Imaging, an American Heart Association journal.

page 1 from 2

Magnet

A magnet (from Greek μαγνήτις λίθος magnḗtis líthos, "Magnesian stone") is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials and attracts or repels other magnets.

A permanent magnet is one made from a material that stays magnetized. An example is a magnet used to hold notes on a refrigerator door. Materials that can be magnetized, which are also the ones that are strongly attracted to a magnet, are called ferromagnetic (or ferrimagnetic). These include iron, nickel, cobalt, some rare earth metals and some of their alloys (e.g. Alnico), and some naturally occurring minerals such as lodestone.

Although ferromagnetic (and ferrimagnetic) materials are the only ones with an attraction strong enough to a magnet to be commonly considered "magnetic", all other substances respond weakly to a magnetic field, by one of several other types of magnetism.

An electromagnet is made from a coil of wire which acts as a magnet when an electric current passes through it, but stops being a magnet when the current stops. Often an electromagnet is wrapped around a core of ferromagnetic material like steel, which enhances the magnetic field produced by the coil.

The overall strength of a magnet is measured by its magnetic moment, while the local strength of the magnetism in a material is measured by its magnetization.

This text uses material from Wikipedia, licensed under CC BY-SA