Neuroscience

Unique 3-D images reveal the architecture of nerve fibers

In an international collaboration led by Lund University in Sweden, researchers have used synchrotron light to study what happens to the nerves in diabetes. The technique shows the 3-D structure of nerve fibers in very high ...

Neuroscience

The eyes are the window to the nervous system

Individuals who experience an unpleasant tingling in their hands or feet or who suffer from painful discomfort and numbness could be affected by a neuropathy—a disorder of the nervous system in which the nerve fibers become ...

Neuroscience

How nerves may lose their insulation

Charcot-Marie-Tooth (CMT) disease is the most common inherited disorder of the peripheral nerves in humans, affecting 1 in every 2,500 people. There is no cure for the disease, which causes severe disability due to disruptions ...

Medical research

New approaches to heal injured nerves

Injuries to nerve fibers in the brain, spinal cord, and optic nerves usually result in functional losses as the nerve fibers are unable to regenerate. A team from the Department of Cell Physiology at Ruhr-Universität Bochum ...

Psychology & Psychiatry

Traumas change perception in the long term

People with maltreatment experiences in their childhood have a changed perception of social stimuli later as adults. This is what scientists from the Division of Medical Psychology at the University of Bonn have discovered. ...

page 1 from 19

Axon

An axon or nerve fiber is a long, slender projection of a nerve cell, or neuron, that conducts electrical impulses away from the neuron's cell body or soma.

An axon is one of two types of protoplasmic protrusions that extrude from the cell body of a neuron, the other type being dendrites. Axons are distinguished from dendrites by several features, including shape (dendrites often taper while axons usually maintain a constant radius), length (dendrites are restricted to a small region around the cell body while axons can be much longer), and function (dendrites usually receive signals while axons usually transmit them). All of these rules have exceptions, however.

Some types of neurons have no axon—these are called amacrine cells, and transmit signals from their dendrites. No neuron ever has more than one axon; however in invertebrates such as insects the axon sometimes consists of several regions that function more or less independently of each other. Most axons branch, in some cases very profusely.

Axons make contact with other cells—usually other neurons but sometimes muscle or gland cells—at junctions called synapses. At a synapse, the membrane of the axon closely adjoins the membrane of the target cell, and special molecular structures serve to transmit electrical or electrochemical signals across the gap. Some synaptic junctions appear partway along an axon as it extends—these are called en passant ("in passing") synapses. Other synapses appear as terminals at the ends of axonal branches. A single axon, with all its branches taken together, can innervate multiple parts of the brain and generate thousands of synaptic terminals.

This text uses material from Wikipedia, licensed under CC BY-SA