Brain's timing linked with timescales of the natural visual world

September 5, 2007

Researchers have long attempted to unravel the cryptic code used by the neurons of the brain to represent our visual world. By studying the way the brain rapidly and precisely encodes natural visual events that occur on a slower timescale, a team of Harvard bioengineers and brain scientists from the State University of New York have moved one step closer towards solving this riddle. The findings were reported in a September 6th Nature article.

“Visual perception is limited by the relatively slow way in which the neurons in our eyes integrate light. This is why, for example, a Hollywood movie consisting of a series of flickering images appears to us as seamless motion,” explains Garrett Stanley, Associate Professor of Biomedical Engineering at the Harvard School of Engineering and Applied Sciences. “However, when the brain responds to some kind of visual event, such as a ball bouncing, the activity of the neurons responsible for sending information can be precise down to the millisecond, despite the fact that the motion of the ball is much slower.”

To determine why the brain might encode visual information with such precision, the researchers relied on data obtained by directly recording neuronal activity in animals while they viewed natural scene movies. Doing so enabled Garrett and his colleagues to pinpoint the pattern of neuronal firings in cells that respond to form and motion.

Their analysis of the data suggests that the brain’s timescale depends on the nature of the visual stimulus. In other words, the precise timing of the neurons (i.e. their internal clock) changes relative to the timescale of the visual scene. For example, a faster bouncing ball results in more precise brain activity than a slower one. In each case, however, the precision of the neurons’ activity was several times that of the speed of the bouncing ball.

It turns out that the extreme precision of the brain’s neural response to visual stimuli is, paradoxically, necessary to accurately represent the more slowly changing visual world. The neuron’s response must be more precise to recover the important aspects of the visual environment.

“We believe that this type of relative precision may be a general feature of sensory neuron communication,” says Stanley. “You can think of it like digital sampling used for audio recordings. The brain ‘digitizes’ the visual stimulus. As with digital audio recordings, for clear and representational ‘playback’, the encoding frequencies must be at least double that of the signal information.”

In future research, the researchers plan to further clarify why and how the brain encodes visual information across larger networks of cells and across functional units of the brain. They also will investigate how the visual pathway of the brain adapts to changes in the visual scene. They believe cracking the neural code will help other scientists and engineers better “communicate” with the brain. Understanding the speed at which the brain encodes information is critical for designing interfaces such as neural prosthetics, that seek to augment or replace brain function lost to trauma or disease.

Source: Harvard University

Explore further: Human Level Artificial Intelligence 2016: Artificial General Intelligence and then some (Part 2)

Related Stories

Brain modulyzer provides interactive window into the brain

October 10, 2016

Did you know that your brain processes information in a hierarchy? As you are reading this page, the signal coming in through your eyes enters your brain through the thalamus, which organizes it. That information then goes ...

Brain diseases manifest in the retina of the eye

October 3, 2016

Diseases of the central nervous system (CNS) may manifest as pathological changes in the retina of the eye. Research from the University of Eastern Finland (UEF) shows that retinal changes may be detected earlier than brain ...

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.