Brain plasticity: Changes and resets in homeostasis

June 25, 2009

In an article published in the June 25th edition of the journal Neuron, researchers at the Hotchkiss Brain Institute, University of Calgary, have found that synaptic plasticity, long implicated as a device for 'change' in the brain, may also be essential for stability.

Homeostasis, the body's own mechanism of regulating and maintaining internal balance in the body, is necessary for survival. Precisely how the brain pulls off this tricky balancing act has not been well appreciated.

By examining neural circuits that regulate fluid volume, Jaideep Bains, PhD, and colleagues, Brent Kuzmiski, PhD, and Quentin Pittman, PhD, have demonstrated that multiple forms of synaptic plasticity work to ensure that an effective response to a life-threatening challenge is followed by an immediate recovery of these neural circuits to pre-challenge conditions.

These observations provide the first set of synaptic rules that help us understand how homeostatic setpoints are re-set in vivo. Based on their findings, Bains and colleagues, demonstrate that synaptic plasticity is essential for maintaining stability in a nervous system constantly bombarded by inputs from the outside world.

Source: University of Calgary (news : web)

Related Stories

Recommended for you

Scientists develop new drug screening tool for dystonia

December 8, 2016

Duke University researchers have identified a common mechanism underlying separate forms of dystonia, a family of brain disorders that cause involuntary, debilitating and often painful movements, including twists and turns ...

Transplanted interneurons can help reduce fear in mice

December 8, 2016

The expression "once bitten, twice shy" is an illustration of how a bad experience can induce fear and caution. How to effectively reduce the memory of aversive events is a fundamental question in neuroscience. Scientists ...

Honeybee memories: Another piece of the Alzheimer's puzzle?

December 8, 2016

A breakdown of memory processes in humans can lead to conditions such as Alzheimer's and dementia. By looking at the simpler brain of a honeybee, new research published in Frontiers in Molecular Neuroscience, moves us a step ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.