Hyperoxia may slow formation of wrinkles

June 29, 2010

It's no secret that UVB radiation from the sun causes wrinkles. However, a Japanese study published in the American Journal of Physiology -- Regulatory, Integrative and Comparative Physiology indicates that oxygen may help combat the formation of wrinkles by lessening tissue damage done by UVB rays.

In the study, mice who were placed in an oxygen chamber after exposure to UVB radiation developed fewer and showed fewer signs of than mice who were exposed to UVB radiation alone.

UVB and Skin Damage

The readily visible hallmarks of are wrinkles and a thickening in the outer layer of skin, the epidermis. Together they make skin look and feel leathery.

The "sun-weathered" look is merely evidence of what is happening on a molecular level beneath the skin's surface, however. When skin is repeatedly exposed to UVB radiation, new blood vessels form from existing in the skin in a process called cutaneous angiogenesis. Several transcription factors—proteins that bind to specific sequences—play a role in angiogenesis, including hypoxia inducible factor (HIF-1) and its subunit HIF-1 α and vascular endothelial growth factor (VEGF).

The Study

In the study, the researchers assigned 24 hairless mice into three groups. The control group, the UVB group, and the UVB+HO group. The control group was not exposed to UVB radiation. Both the UVB and the UVB+HO groups were exposed to UVB radiation by a special fluorescent lamp three times per week for five weeks, but the UVB+HO mice were placed in an oxygen chamber for two hours after each irradiation.

Over the five weeks, the mice in the UVB and UVB+HO groups developed wrinkles, but the wrinkles were more pronounced in the UVB group. Likewise, both the UVB and UVB+HO group experienced increased epidermal thickness, but again, this result was more pronounced in the UVB group.

There were differences between the UVB and UVB+HO groups on a molecular level, as well. The level of HIF-1α increased significantly in the UVB group compared to the control group, whereas there was no significant increase in the UVB+HO group. VEGF levels increased in both the UVB and the UVB+HO groups, but the UVB+HO group experienced a smaller increase. This implies that oxygen and the excess amount of oxygen in body tissue, or hyperoxia, that it provides can lessen skin damage and wrinkling caused by UVB radiation.

A Surprising Result

The study had one surprising result, as well, one involving molecules called matrix metalloproteinases (MMPs). Like HIF-1 α and VEGF, they play a role in angiogenesis. Two MMPs in particular, MMP-2 and MMP-9, are thought to accelerate wrinkling by degrading the outer components of cells. However, in this study, MMP-2 levels tended to decrease with exposure to UVB radiation and MMP-9 levels remained the same, even in mice who did not receive oxygen. According to the researchers, this implies that MMP-2 and MMP-9 are not main factors in wrinkle formation and angiogenesis, at least in the early stages of skin damage caused by UVB radiation.

The implications for humans remain to be seen, and the researchers note that further studies are required. In the meantime, the best way to avoid wrinkles caused by UVB radiation is to wear sunscreen.

More information: Shigeo Kawada, Masaru Ohtani, and Naokata Ishii, all of the University of Tokyo, conducted the study. The study is entitled "Increased oxygen tension attenuates acute ultraviolet-B-induced skin angiogenesis and wrinkle formation" (doi:10.1152/ajpregu.00199.2010).

Related Stories

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.