Animal results may pave way to treating rare mitochondrial diseases in children

May 19, 2011

A human drug that both prevents and cures kidney failure in mice sheds light on disabling human mitochondrial disorders, and may represent a potential treatment in people with such illnesses.

"There are no effective cures for mitochondrial diseases, even in animals," said study leader Marni J. Falk, M.D., who cares for children in the Mitochondrial-Genetics Disease Clinic at The Children's Hospital of Philadelphia. "So these striking results in mice may suggest a novel therapy of direct relevance for humans."

Falk and colleagues published their study online May 5 in the journal EMBO Molecular Medicine.

Mitochondria are tiny structures that operate as powerhouses within human and animal cells, generating energy from food. As such, they are fundamental to life. Failures of proper impair a wide range of organ systems.

Individually, mitochondrial diseases are very rare. However, because there are hundreds of these disorders, they collectively have a broad impact, affecting at least 1 in 5,000 people, and possibly more. Malfunctioning mitochondria also contribute to complex disorders, including diabetes, epilepsy, Alzheimer's disease and .

The current study focused on an inherited genetic deficiency that prevents the production of coenzyme Q, a critical antioxidant and component of the energy-generating respiratory chain. In humans and in the used to model this disease, the deficiency results in fatal . The current treatment, which consists of providing regular supplements of the missing enzyme product, , is often ineffective.

Falk's team fed the mutant mice probucol, an oral drug formerly used to treat people with (since replaced for that purpose by ). The drug prevented the mice from developing , and also reversed kidney disease in mice that had already developed it. It also raised the levels of coenzyme Q10 within the animals' tissues and corrected signaling abnormalities.

"This drug showed remarkable benefits in the mice, especially when compared to directly feeding the mice supplements of the missing co-factor—coenzyme Q10," said Falk. "If this approach can be safely translated to humans, we may have a more effective treatment for mitochondrial disease than anything currently being used."

Primary coenzyme Q deficiency is vanishingly rare in humans—only a few dozen people are known to have the disease. However, said Falk, the disease is representative of a more common group of inherited, hard-to-treat mitochondrial diseases called respiratory chain (RC) defects.

RC defects share a common cellular failure to properly consume oxygen for the purposes of generating energy. Such defects, caused by a wide range of genetic disorders that affect mitochondria, constitute a common culprit in human mitochondrial disease. "If using probucol or a similar drug can benefit patients with defects in the respiratory chain, this could be a significant advance in treating ," said Falk.

At the very least, added Falk, the current study increases basic understanding of the biology of mitochondrial disease. She noted that continuing research building on her team's findings may set the stage for eventual clinical trials using this approach.

More information: "Probucol ameliorates renal and metabolic sequelae of primary CoQ deficiency in Pdss2 mutant mice," EMBO Molecular Medicine, published online May 5, 2011. doi: 10.1002/emmm.201100149

Related Stories

Recommended for you

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.