Intestinal cell defense mechanism against bacteria

Scheme of Salmonella infection and clearance via autophagy pathway. The critical intracellular signals are ubiquitin that decorates Salmonella and Optineurin that acts as an autophagy receptor critical for targeting of Salmonella to the degradation in the lysosome. Credit: Ivan Dikic

Salmonella is widely prevalent in the animal kingdom. The reason we do not suffer from severe intestinal infections very often is due to our body's defence system, which manages to digest invading bacteria. This is why, generally speaking, a healthy human being will only fall ill if he consumes more than 100.000 salmonella bacteria via a contaminated food source, such as eggs or meat. An international team of researchers, led by Prof. Ivan Dikic from the Goethe University in Frankfurt has now found out how body cells recognise salmonella and render it harmless. Understanding this process at a molecular level is crucial in identifying new targets for treatment. Tropical and sub-tropical countries in particular, where various sub-species of salmonella are common, are experiencing a rapid increase in resistance to antibiotics, with children at greatest risk.

Salmonella infection begins with bacteria entering the of the intestinal mucosa. To prevent them multiplying there, special cell organelles, called autophagosomes are activated. These encircle the invaders and then become absorbed in other organelles – lysosomes – that contain certain special digestive enzymes, which break down the bacteria into their constituent parts. But how exactly do the autophagosomes recognise salmonella? Prof. Ivan Dikic and his research group at the Biochemistry Institute II have now shed light on this mechanism.

As reported in a current article in the scientific journal "Science", the salmonella are marked as 'waste material' by the molecule ubiquitin. In order for the autophagosomes to become active, the marked bacteria have to bind to another molecule – LC3 – on the autophagosomal membrane. Here, the protein optineurin plays a key role, linking the marked Salmonella to the autophagosmal LC3, thereby setting off a process of selective autophagy. But optineurin becomes active as a link only after being chemically modified by an enzyme, (in this case it is phosphorylated by the protein kinase TBK1). "We suspect that phosphorylation acts as a regulated switch to trigger selective autophagy of bacteria but might also prove significant in other cargoes like protein aggregates or damaged mitochondria" explains Prof. Ivan Dikic, underlining the importance of these findings. It is thought that impaired autophagy processes may be implicated in, among other things, the development of cancer as well as neurodegenerative diseases.

In the area of infectious diseases, these findings are particularly relevant in view of the fact that gastrointestinal disease caused by Salmonella enterica has rapidly increased since the mid-1980s. In Germany, approx. 30,000 cases were reported to the health authorities in 1985, but by 2005 the figure has risen to 52,000. Worldwide, 94 million people fall ill each year with acute gastroenteritis, and 155,000 of these die. Typhoid, a disease also caused by Salmonella, affects 16 million people annually and mortality rates reach 200,000, with children in particular falling victim to the disease. Bacteria are becoming increasingly resistant to so that the potential for treating disease is limited. Chloramphenicol, a formerly popular broad-spectrum antibiotic, is now ineffective, and even Fluoroquinolones, currently a commonly prescribed antibiotic, is proving inadequate in fighting bacteria. As co-author Prof. Dirk Bumann from the Biozentrum at Basel University puts it: "There is a pressing need to find new forms of treatment for infectious diseases. A better understanding of how the body's own defence mechanism makes use of autophagy will certainly help."

More information: Philipp Wild et al: Phosphorylation of the Autophagy Receptor Optineurin restricts Salmonella growth, Science 26th May 2011 advanced online publication (Science DOI: 10.1126/science.1205405)

Provided by Goethe University Frankfurt

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Self-digestion as a means of survival

Feb 27, 2009

In times of starvation, cells tighten their belts: they start to digest their own proteins and cellular organs. The process - known as autophagy - takes place in special organelles called autophagosomes. It is a strategy ...

Salmonella in garden birds responsive to antibiotics

Jun 02, 2008

Scientists at the University of Liverpool have found that Salmonella bacteria found in garden birds are sensitive to antibiotics, suggesting that the infection is unlike the bacteria found in livestock and humans.

Probiotic without effect against Salmonella

Apr 19, 2010

Many tourists travelling abroad go down with diarrhoea, which can be caused by Salmonella. While probiotics are often cited as the solution to various stomach problems, the probiotic, Lactobacillus plantarum has no effect ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

Apr 18, 2014

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments