Biomaterial aids nerve regeneration

Andrew Rodda in the laboratory.

(Medical Xpress) -- A Monash University researcher has developed a new biomaterial that encourages damaged nerves in the brain and spinal cord to regrow. The work could revolutionise treatment of nerve-based injuries and diseases, such as Parkinson’s.

PhD student Andrew Rodda was part of a Monash Materials Engineering team investigating xyloglucan, a plant-based compound derived from the seeds of the tamarind tree.

Within plants, xyloglucan plays an important role in linking together and Mr Rodda has been studying its effects in animals with damaged cells.

The compound developed by Mr Rodda can be injected into an injury site as a liquid, before becoming a gel as it reaches body temperature.

Once in place, the gel acts as a support structure through which healthy cells can migrate and potentially reattach themselves to the nervous system.

Until now, all damage to the nerve cells of the central nervous system - the brain and spinal cord – had been considered irreparable.

Mr Rodda said the lack of repair, or regrowth is due mainly to the toxic environment left behind after nerve death.

“Nerve cells are sensitive, and will only grow in the most supportive of environments,” Mr Rodda said.

“After injury, new cells cannot normally penetrate into the empty space left after mass cell death. Cells clump at the edges, forming an impenetrable barrier. This leaves the centre of the wound as a lesion, which contains chemicals that kill growing nerves.”

Mr Rodda said the new works by providing a temporary scaffold on which new cells can grow and penetrate the lesion.

Significantly, it was the helper cells, known as astrocytes, which were the first to move into the implanted gel. These cells secrete beneficial chemicals, which may have helped create an environment in which the delicate nerve cells can survive.

Mr Rodda’s study is part of a worldwide effort to encourage nerve regeneration in the brain and spinal cord. It builds on previous work at Monash University to understand and control nerve growth using biomaterials.

Related Stories

Study: Spinal cord can repair itself

Feb 14, 2007

U.S. scientists say they have disproved the long-held theory that the spinal cord is incapable of repairing itself. The Johns Hopkins University researchers say human nerve stem cells they transplanted into damaged spinal ...

Company Develops a New Approach to Nerve Repair

Mar 12, 2007

A new company, Neurotex Ltd, has been established to develop novel silk-based materials that have the potential to provide a new generation of nerve repair materials and treatments.

Recommended for you

Student seeks to improve pneumonia vaccines

6 hours ago

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

8 hours ago

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

User comments