Once blamed for aging, ROS molecules may actually extend life

June 8, 2011

(Medical Xpress) -- In a new study, Yale University researchers have identified a pathway by which reactive oxygen species (ROS) molecules, which are usually implicated in the aging process due to their damage to DNA, can also act as cellular signaling molecules that extend lifespan. The study, which provides insights into the underlying mechanisms of the ROS signaling process, is published in the June issue of Cell Metabolism.

Increased ROS, and their effects at the , can lead to oxidative stress, which is involved in many diseases and aging. But ROS are also necessary for the proper functioning of the immune system and other biological functions. Using the yeast, the Yale team set out to determine whether regulating ROS and their ability to act as signaling molecules could impact the .

Inhibiting a signaling pathway called of Rapamycin (TOR), which is involved in sensing nutrients and cell growth, increases lifespan in yeast, as it does in mice. The Yale team found that a key way this occurs is by altering the function of cellular powerhouses called mitochondria so that they produce more signaling ROS.

"The concept that ROS are important cellular signaling molecules, and not just agents of damage and stress, has grown to be widely accepted," said lead author Gerald S. Shadel, Ph.D., professor of pathology and genetics at Yale School of Medicine. "Remarkably, in this study, we show that their purposeful production by mitochondria can even provide an adaptive signal that can delay aging."

Since the TOR pathway operates largely the same in yeast as it does in humans, the new connections to mitochondrial ROS signaling and aging in this study may be more widely applicable. Shadel said that new ways to intervene in age-related pathology may stem from these basic studies. "Trials targeting the TOR pathway as an anti-cancer strategy in humans are already underway. Our study suggests that carefully augmenting mitochondria and ROS production in humans may also be beneficial in combating aging and associated diseases."

Other authors are Yong Pan and Elizabeth A. Schroeder of Yale School of Medicine; Alejandro Ocampo of the Yale Department of Biochemistry and Molecular Biology; and Antonio Barrientos of Yale and the University of Miami Miller School of Medicine.

Related Stories

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Shakescene21
not rated yet Jun 08, 2011
Interesting, but I'm still unconvinced that higher ROS can extend life in humans. The damages caused by ROS tend to be slow but cumulative. These cumulative effects are probably more important for humans, with a lifespan of 80 years, than for yeast with a lifespan of a few weeks.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.