Examining the brain as a neural information super-highway

An article demonstrating how tools for modeling traffic on the Internet and telephone systems can be used to study information flow in brain networks will be published in the open-access journal PLoS Computational Biology on 2nd June 2011.

The brain functions as a complex system of regions that must communicate with each other to enable everyday activities such as perception and cognition. This need for networked computation is a challenge common to multiple types of communication systems. Thus, important questions about how information is routed and emitted from individual brain regions may be addressed by drawing parallels with other well-known types of communication systems, such as the Internet.

The authors, from the Rotman Research Institute at Baycrest Centre, Toronto, Canada, showed that – similar to other communication networks – the timing pattern of information emission is highly indicative of information traffic flow through the network. In this study the output of information was sensitive to subtle differences between individual subjects, cognitive states and brain regions.

The researchers recorded electrical activity from the brain and used signal processing techniques to precisely determine exactly when units of information get emitted from different regions. They then showed that the times between successive departures are distributed according to a specific distribution. For instance, when research study participants were asked to open their eyes in order to allow visual input, emission times became significantly more variable in parts of the brain responsible for visual processing, reflecting and indicating increased neural "traffic" through the underlying .

This method can be broadly applied in neuroscience and may potentially be used to study the effects of neural development and aging, as well as neurodegenerative disease, where traffic flow would be compromised by the loss of certain nodes or disintegration of pathways.

More information: Mišić B, Vakorin VA, Kovačević N, Paus T, McIntosh AR (2011) Extracting Message Inter-Departure Time Distributions from the Human Electroencephalogram. PLoS Comput Biol 7(6): e1002065. doi:10.1371/journal.pcbi.1002065

Related Stories

The aging brain: Failure to communicate

Dec 05, 2007

A team of Howard Hughes Medical Institute researchers has shown that normal aging disrupts communication between different regions of the brain. The new research, which used advanced medical imaging techniques to look at ...

Brain 'maps' reveal clue to mental decline

Feb 08, 2011

(PhysOrg.com) -- The human brain operates as a highly interconnected small-world network, not as a collection of discrete regions as previously believed, with important implications for why many of us experience cognitive ...

Recommended for you

Celebrities in 'Ice Bucket Challenge' to fight disease

5 hours ago

Steven Spielberg, Justin Bieber and Bill Gates are among many celebrities pouring buckets of ice water over their heads and donating to fight Lou Gehrig's disease, in a fundraising effort that has gone viral.

Study helps explain why elderly have trouble sleeping

7 hours ago

As people grow older, they often have difficulty falling asleep and staying asleep, and tend to awaken too early in the morning. In individuals with Alzheimer's disease, this common and troubling symptom ...

Targeted brain training may help you multitask better

8 hours ago

The area of the brain involved in multitasking and ways to train it have been identified by a research team at the IUGM Institut universitaire de gériatrie de Montréal and the University of Montreal.

User comments