A break for bone disease research

July 29, 2011
Figure 1: In the Japanese population a specific gene is linked to osteoporosis that can lead to broken bones in the elderly. Credit: 2011 iStockphoto/lisegagne

Osteoporosis is the reduction in bone strength that occurs during aging, which increases the chance of elderly people experiencing breaks. A genome-wide association study in the Japanese population has revealed that a genomic variant within a newly identified gene, which the discoverers have named FONG, enhances susceptibility to osteoporosis.

Led by Shiro Ikegawa of the RIKEN Center for Genomic Medicine, the researchers began by examining the entire genomes of 190 Japanese individuals with osteoporosis and 1,557 controls. Based on the results of this initial study, they focused on 3,000 single nucleotide changes in the genomes of an additional 526 individuals with osteoporosis and 1,537 controls. Additional analyses in two further population samples led to the identification of the genomic variant, found on chromosome 2; however, there was no known gene around the variant. Instead, the researchers found only representations of portions of expressed in the form of several expressed sequence tags.

By analyzing messenger RNAs (mRNAs) expressed from the genomic region around the variant, Ikegawa and colleagues discovered that the genomic variant is within FONG, which stands ‘formiminotransferase N-terminal sub-domain containing gene’. This previously unknown gene is expressed in various human tissues, including bone. Because the genomic variant resides outside of the FONG protein-coding region, Ikegawa and colleagues hypothesized that the variant may somehow affect the expression levels of the FONG gene. 

One domain of the FONG gene, the formiminotransferase N-terminal sub-domain, is common in many different species, which indicates that it could have a very important function for maintaining life. “This domain appears to be an enzyme that is responsible for converting the amino acid histidine to the amino acid glutamic acid,” says Ikuyo Inaba (nee Kou), a researcher in Ikegawa’s laboratory and the first author of the study. 

Glutamic acid and its breakdown products are known to play an important role in maintaining the bones, so any problems with the creation of these compounds may lead to osteoporosis. “The glutamic acid signaling pathway may also affect osteoporosis risk in non-Japanese individuals,” she explains. “So, the association of this variant of the FONG gene with disease in other populations is worth investigating in the future.”

According to Inaba, further work is needed to determine how the osteoporosis-linked variant of the FONG gene can affect its expression. The identification of this variant in FONG—and its link to —can aid in the development of new therapies for this disease.

Explore further: Common genetic variant linked to pulmonary fibrosis risk

More information: Kou, I., et al. Common variants in a novel gene, FONG on chromosome 2q33.1 confer risk of osteoporosis in Japanese. PLoS ONE e19641 (2011). doi:10.1371/journal.pone.0019641

Related Stories

Common genetic variant linked to pulmonary fibrosis risk

April 20, 2011

Scientists funded by the National Institutes of Health have identified a common genetic variant associated with substantially increased risk of developing pulmonary fibrosis, a debilitating and life-threatening lung condition. ...

Pinpointing a tell-tale mark of liver cancer

July 8, 2011

Persistent hepatitis C virus (HCV) infection can lead to chronic hepatitis C and then progress to fatal liver diseases including liver cirrhosis and liver cancer, the third most common cause of cancer-related deaths. Worldwide, ...

Recommended for you

New class of RNA tumor suppressors identified

November 23, 2015

A pair of RNA molecules originally thought to be no more than cellular housekeepers are deleted in over a quarter of common human cancers, according to researchers at the Stanford University School of Medicine. Breast cancer ...

Batten disease may benefit from gene therapy

November 11, 2015

In a study of dogs, scientists showed that a new way to deliver replacement genes may be effective at slowing the development of childhood Batten disease, a rare and fatal neurological disorder. The key may be to inject viruses ...

Molecular clocks control mutation rate in human cells

November 9, 2015

Every cell in the human body contains a copy of the human genome. Through the course of a lifetime all cells are thought to acquire mutations in their genomes. Some of the mutational processes generating these mutations do ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.