New clues to the structural dynamics of BK channels

BK channels (large-conductance, Ca2+-dependent K+ channels) are essential for the regulation of important biological processes such as smooth muscle tone and neuronal excitability. New research shows that BK channel activation involves structural rearrangements formerly not understood. The study appears in the August 2011 issue of the Journal of General Physiology.

Previous research pointed to a possible unified theory of activation gating in K+ channels, with the "activation gate" formed by the bundle crossing of four S6 transmembrane helices from the four subunits. Recent studies, however, have suggested a different structure for BK channels, but the exact location of the activation gate remained a mystery.

A new study by Xixi Chen and Richard Aldrich (The University of Texas at Austin) provides important clues to this question. The research identifies a single residue M314, halfway down S6, that appears to change conformation during the opening of the BK channel, rotating its side chain from a position in the closed state not exposed to the hydrophilic pore to one that is so exposed in the open state. The results further show that M314 might not actually form the part of the activation gate that blocks ion passage, but that motions in the deep pore may be required for blocking ion passage elsewhere in the channel.

The findings point to new directions for research regarding the of BK channel activation, according to Commentary by Daniel Cox (Tufts University School of Medicine) and Toshinori Hoshi (University of Pennsylvania). Importantly, they say, the study demonstrates that activation is not an open-and-shut case as previously suspected.

More information: Cox, D.H., and T. Hoshi. 2011. J. Gen. Physiol. doi:10.1085/jgp.201110681.
Chen, X., and R.W. Aldrich. 2011. J. Gen. Physiol. doi:10.1085/jgp.201110632.

Provided by Rockefeller University Press

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Possible link between different forms of epilepsy found

Jun 16, 2008

Carnegie Mellon University neuroscientists have identified what may be the first known common denominator underlying inherited and sporadic epilepsy — a disruption in an ion channel called the BK channel. Although BK channels ...

Drug prevents seizure progression in model of epilepsy

May 04, 2009

Carnegie Mellon University researchers have identified a new anticonvulsant compound that has the potential to stop the development of epilepsy. The findings are published in the March issue of the journal Epilepsia.

Recommended for you

New technology allows hair to reflect almost any color

6 hours ago

What if you could alter your hair to reflect any color in the spectrum? What if you could use a flatiron to press a pattern into your new hair color? Those are possibilities suggested by researchers from ...

User comments