New studies reveal downstream processes of ion channel inactivation

March 2, 2010

Two studies by researchers at The Johns Hopkins University School of Medicine reveal new details of the mechanisms of ion channel inactivation. The papers appear in the March issue of The Journal of General Physiology.

After opening, many ion channels spontaneously close by inactivation, a process distinct from that involved in opening. The inactivation of channels is important for a variety of biological processes, including the timing of action potentials and the control of permeability, which affects many aspects of intracellular signaling. Although the events of Ca2+-dependent inactivation (CDI) and voltage-dependent inactivation (VDI) have been unveiled in the past decade, the downstream mechanisms remained unclear.

Tadross et al. studied both CDI and VDI in Cav1.3 channels and showed them to differ not only in their initiation mechanisms but also in their distinct molecular endpoints. For CDI, a clear pattern emerges: activation-enhancing mutations proportionately weaken inactivation, supporting the idea that CDI reduces channel by allosteric hindrance of the activation gate. For VDI, the data implicate a "hinged lid-shield" mechanism, similar to a hinged-lid process, with a previously unrecognized feature, a "shield" in Cav1.3 channels that is specialized to repel lid closure.

In a Commentary accompanying the papers, Jianmin Cui (Washington University, St. Louis) examines the mechanisms of inactivation and provides context for the importance of the new findings by Tadross et al.

More information: References:
Cui, J. 2010. J. Gen. Physiol. doi:10.1085/jgp.201010421.
Tadross, M.R., et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910308.
Tadross, M.R., and D.T. Yue. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910309.

Related Stories

Recommended for you

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.