Technique to stimulate heart cells may lead to light-controlled pacemakers

August 9, 2011

(Medical Xpress) -- A new technique that stimulates heart muscle cells with low-energy light raises the possibility of a future light-controlled pacemaker, researchers reported in Circulation: Arrhythmia & Electrophysiology, a journal of the American Heart Association.

"Electronic cardiac pacemakers and defibrillators are well established and successful technologies, but they are not without problems, including the breakage of metal leads, limited battery life and interference from strong magnetic fields," said Emilia Entcheva, Ph.D., senior author of the study and associate professor of biomedical engineering at Stony Brook University in Stony Brook, New York. "Eventually, optical stimulation may overcome some of these problems and offer a new way of controlling function."

The research is part of a new field called optogenetics that introduces light-sensitive proteins into "excitable" cells, making it possible to control specific activities within cells. Excitable cells can actively generate electrical signals such as nerve cells and muscle cells.

The main appeal of control by light is the unprecedented ability to remotely, without contact, turn on/off a single cell or a cell type, not possible by electrical or other means of stimulation.

Several years ago, investigators discovered that brain cells could be stimulated using light if they were genetically altered to produce a light-sensitive protein called channelrhodopsin 2 (ChR2).

In the new study, researchers created cells expressing the ChR2 protein and coupled them with from animals, creating heart tissue stimulated by light. They found light-triggered contractions and electrical waves were indistinguishable from electrically-triggered waves.

Rather than directly modifying , the researchers coupled donor cells optimized for light responsiveness with the heart cells. The new technique uses much lower energy than in prior studies and doesn't require the use of viruses or the introduction of genes from other organisms into heart cells. Instead, cells from a person's bone marrow or skin can be cultured and modified to respond to light, reducing the possibility that the immune system will reject the light-sensitive cells.

"Our method of non-viral cell delivery may overcome some hurdles toward potential clinical use by harvesting cells from the patient, making them light-responsive and using them as donor in the same patient," Entcheva said.

The approach may someday improve pacemakers and defibrillators. Instead of metal leads, a light-controlled would use biocompatible, flexible plastic optic fibers.

In preliminary calculations, a light-based system might require only one-tenth the energy, meaning that a battery could last 50 years rather than five. The more immediate application of the technique will likely be to aid heart research.

"Optical stimulation is a great tool to selectively probe and control different parts of the electrical circuitry of the heart to better understand where the vulnerable sites are or what gives rise to lethal arrhythmias," Entcheva said.

The technique might also be used to test new drugs for possible cardiac side effects.

Related Stories

Recommended for you

High-fat diet starves the brain

April 29, 2016

A high-fat diet of three days in mice leads to a reduction in the amount of glucose that reaches the brain. This finding was reported by a Research Group led by Jens Brüning, Director at the Max Planck Institute for Metabolism ...

A vitamin that stops the aging process of organs

April 28, 2016

Nicotinamide riboside (NR) is pretty amazing. It has already been shown in several studies to be effective in boosting metabolism. And now a team of researchers at EPFL's Laboratory of Integrated Systems Physiology (LISP), ...

Lifestyle has a strong impact on intestinal bacteria

April 28, 2016

Everything you eat or drink affects your intestinal bacteria, and is likely to have an impact on your health. That is the finding of a large-scale study led by RUG/UMCG geneticist Cisca Wijmenga into the effect of food and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.