Scientists discover a 'master key' to unlock new treatments for autoimmune disorders

Imagine a single drug that would treat most, if not all, autoimmune disorders, such as asthma, inflammatory bowel disease, and Lupus. That might not be so hard to do thanks to a team of researchers who have discovered a molecule normally used by the body to prevent unnecessary immune reactions. This molecule, pronounced "alpha v beta 6," normally keeps our immune systems from overreacting when food passes through our bodies, and it may be the key that unlocks entirely new set of treatments for autoimmune disorders. This discovery was recently published in research report appearing the Journal of Leukocyte Biology.

"Currently we do not have special methods to radically treat most immune diseases; all we can do is to temporarily inhibit the clinical symptoms for those diseases," said Ping-Chang Yang, a researcher involved in the work from the Department of Pathology and at McMaster University in Ontario, Canada. "Our findings have the potential to repair the compromised immune tolerant system so as to lead the body immune system to 'correct' the ongoing pathological conditions by itself."

Scientists made this discovery in mice when they noticed that their intestines secreted alphavbeta6, when absorbing food. Alphavbeta6, together with the absorbed food, induced the body to produce immune tolerant cells, which ensured that the food did not cause an excessive . Researchers then generated alphavbeta6 using cultured and found that both could be used to generate the immune tolerant cells needed to reduce or eliminate out-of-control immune reactions.

"Development of new treatments and cures for diseases is usually a long process involving a series of incremental steps taken from the laboratory all the way through to the patient's bedside," said John Wherry, Ph.D., Deputy Editor of the . "Occasionally, however, scientists make large leaps forward instead. While considerable work remains to determine whether or not this discovery will directly translate into new therapies, the alphavbeta6 discovery reported by these scientists is exciting, if not stunning."

More information: Xiao Chen, Chun-Hua Song, Bai-Sui Feng, Tong-Li Li, Ping Li, Peng-Yuan Zheng, Xian-Ming Chen, Zhou Xing, and Ping-Chang Yang. Intestinal epithelial cell-derived integrin αβ6 plays an important role in the induction of regulatory T cells and inhibits an antigen-specific Th2 response. J Leukoc Biol. 2011 90:751-759; doi:10.1189/jlb.1210696

Related Stories

New discovery may lead to new class of allergy drugs

Jan 29, 2009

If you've ever wondered why some allergic reactions progress quickly and may even become fatal, a new research report published in the February 2009 issue of the Journal of Leukocyte Biology provides an important part of the ...

Study: New way to control inflammation

Oct 03, 2006

U.S. researchers say they've discovered a new way to control or terminate potentially harmful immune responses that produce inflammation.

Recommended for you

Infant cooing, babbling linked to hearing ability

5 hours ago

Infants' vocalizations throughout the first year follow a set of predictable steps from crying and cooing to forming syllables and first words. However, previous research had not addressed how the amount ...

Developing 'tissue chip' to screen neurological toxins

6 hours ago

A multidisciplinary team at the University of Wisconsin-Madison and the Morgridge Institute for Research is creating a faster, more affordable way to screen for neural toxins, helping flag chemicals that ...

Gene mutation discovered in blood disorder

10 hours ago

An international team of scientists has identified a gene mutation that causes aplastic anemia, a serious blood disorder in which the bone marrow fails to produce normal amounts of blood cells. Studying a family in which ...

Airway muscle-on-a-chip mimics asthma

12 hours ago

The majority of drugs used to treat asthma today are the same ones that were used 50 years ago. New drugs are urgently needed to treat this chronic respiratory disease, which causes nearly 25 million people ...

User comments