Stem cells, signaling pathways identified in lung repair

October 11, 2011

(Medical Xpress) -- Researchers at National Jewish Health have identified cells and signaling molecules that trigger the repair of injured lungs. Stijn De Langhe, PhD, and his colleagues report October 10, 2011, online in the Journal of Clinical Investigation, that destruction of lung tissue in mice induces smooth muscle cells surrounding the airways to secrete a protein known as fibroblast growth factor 10 (FGF10), which induces surviving epithelial cells in the airways to revert to a stem-cell state, proliferate, repair and repopulate the lining of the lungs.

“The repair process in the lungs turns out to be very similar to the developmental process that originally formed the lungs,” said Dr. De Langhe, Assistant Professor of Pediatrics at National Jewish Health. “These findings identify important cells and signaling that could be used in therapeutic strategies to promote repair of injured lungs and turn off aberrant repair that occurs in many diseases.”

In mouse lungs, most cells lining the airways were destroyed as a result of exposure to toxic substances napthalene, ozone or bleomycin. One type, known as variant Clara cells, however, resisted damage from those substances.

In a series of experiments, Dr. De Langhe and his colleagues showed that nearby parabronchial began secreting FGF10 soon after the injury. The FGF caused the variant Clara cells to revert to their original stem-cell state. They proliferated and restored the full complement of epithelial cells lining the airways, thus repairing the injury.

These findings could be valuable for both turning on and off the repair process. In acute lung injury, it could be valuable to augment the repair process. But in other diseases, such as asthma and pulmonary fibrosis, the repair process goes awry leading to scarring or build up of excess cells in the airways. Turning off the repair process might help treat those diseases.

Explore further: Study sheds light on deadly lung disease

Related Stories

Study sheds light on deadly lung disease

April 14, 2008

Systemic sclerosis (SSc), also known as scleroderma, is characterized by the formation of fibrosis, or scar tissue, on internal organs as well as the skin. Beyond its disfiguring symptoms, SSc is associated with a high rate ...

Team identifies stem cells that repair injured muscles

March 5, 2009

A University of Colorado at Boulder research team has identified a type of skeletal muscle stem cell that contributes to the repair of damaged muscles in mice, which could have important implications in the treatment of injured, ...

New airway stem cell found

June 27, 2011

Researchers at UCLA have identified a new stem cell that participates in the repair of the large airways of the lungs, which play a vital role in protecting the body from infectious agents and toxins in the environment.

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.