Scientists point to link between missing synapse protein and abnormal behaviors

November 23, 2011 by Kimm Fesenmaier

(Medical Xpress) -- Although many mental illnesses are uniquely human, animals sometimes exhibit abnormal behaviors similar to those seen in humans with psychological disorders. Such behaviors are called endophenotypes. Now, researchers at the California Institute of Technology (Caltech) have found that mice lacking a gene that encodes a particular protein found in the synapses of the brain display a number of endophenotypes associated with schizophrenia and autism spectrum disorders.

The new findings appear in a recent issue of The , with Mary Kennedy, the Allen and Lenabelle Davis Professor of Biology at Caltech, as the senior author.

The team created mutations in mice so that they were missing the gene for a protein called densin-180, which is abundant in the synapses of the brain, those electro-chemical connections between one neuron and another that enable the formation of networks between the brain's neurons. This protein sticks to and binds together several other proteins in a part of the neuron that's at the receiving end of a synapse and is called the postsynapse. "Our work indicates that densin-180 helps to hold together a key piece of regulatory machinery in the postsynaptic part of excitatory brain synapses," says Kennedy.

In mice lacking densin-180, the researchers found decreased amounts of some of the other normally located in the postsynapse. Kennedy and her colleagues were especially intrigued by a marked decrease in the amount of a protein called DISC1. "A mutation that leads to loss of DISC1 function has been shown to predispose humans to development of schizophrenia and ," Kennedy says.

In the study, the researchers compared the behavior of typical mice with that of mice lacking densin. Those without densin displayed impaired short-term memory, hyperactivity in response to novel or stressful situations, a deficit of normal nest-building activity, and higher . "Studies of mice with schizophrenia and autism-like features have reported similar behaviors," Kennedy notes.

"We do not know precisely how the molecular defect leads to the behavioral endophenotypes. That will be our work going forward," Kennedy says. "The molecular mechanistic links between a gene defect and defective behavior are complicated and, as yet, mostly unknown. Understanding them goes to the very heart of understanding brain function."

Indeed, she adds, the findings point to the need for a better understanding of the interactions that occur between proteins at synapses. Studies of these interactions could provide information needed to screen for new and better pharmaceuticals for the treatment of . "This study really reinforces the idea that small changes in the molecular structures at synapses are linked to major problems with behavior," Kennedy says.

Explore further: Researchers uncover steps in synapse building, pruning

More information: "Deletion of Densin-180 Results in Abnormal Behaviors Associated with Mental Illness and Reduces mGluR5 and DISC1 in the Postsynaptic Density Fraction," The Journal of Neuroscience (2011).

Related Stories

Researchers uncover steps in synapse building, pruning

November 16, 2011

Like a gardener who stakes some plants and weeds out others, the brain is constantly building networks of synapses, while pruning out redundant or unneeded synapses. Researchers at The Jackson Laboratory led by Assistant ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.