Researchers uncover steps in synapse building, pruning

November 16, 2011

Like a gardener who stakes some plants and weeds out others, the brain is constantly building networks of synapses, while pruning out redundant or unneeded synapses. Researchers at The Jackson Laboratory led by Assistant Professor Zhong-wei Zhang, Ph.D., have discovered a factor in synapse-building, also showing that the building and pruning processes occur independent of each other.

Mammals are born with functioning but not-yet-developed brains. After birth, external stimuli and internal programs continue to shape the connections between neurons, known as , and the formation of networks of synapses known as . Some grow stronger, some grow weaker, redundant connections are eliminated, and so on. Such "plasticity," the ongoing refinement of and networks, continues throughout life, albeit more subtly with time and maturation.

Much about plasticity remains unknown. How the are modified, what controls the modification, the mechanics of strengthening or eliminating specific synapses and much more are subjects of ongoing research. Besides gaining a better picture of normal brain development, scientists seek to understand the errors in synapse building and pruning that are associated with autism, mental retardation and schizophrenia.

Zhang and colleagues investigated a major type of synapse in the brain (called the glutamatergic synapse) that undergoes rapid refinement soon after birth. What they discovered is that these synapses are strengthened through the addition of a particular kind of glutamate receptors, beginning about a week after birth for mice. Notably, sensory deprivation disrupts the strengthening of the synapses, highlighting the role of early experience in synapse building.

In a somewhat surprising finding, the Zhang lab also discovered that the elimination of redundant synapses was not dependent on the other synapses' being strengthened. Since synaptic strengthening usually precedes removal of redundant synapses, it was not known if such elimination is dependent on the prior strengthening. In mice lacking the receptor, which prevented significant strengthening of synaptic connections, redundant synapses were eliminated as usual.

Explore further: Even in fruit flies, enriched learning drives need for sleep

More information: Wang et al.: Elimination of redundant synaptic inputs in the absence of synaptic strengthening. Journal of Neuroscience, Nov. 16, 2011, DOI:10.1523/JNEUROSCI.4569-11.2011

Related Stories

Even in fruit flies, enriched learning drives need for sleep

June 23, 2011
Just like human teenagers, fruit flies that spend a day buzzing around the "fly mall" with their companions need more sleep. That's because the environment makes their brain circuits grow dense new synapses and they need ...

Recommended for you

Study uncovers specialized mouse neurons that play a unique role in pain

August 17, 2017
Researchers from the National Institutes of Health have identified a class of sensory neurons (nerve cells that electrically send and receive messages between the body and brain) that can be activated by stimuli as precise ...

Scientists discover powerful potential pain reliever

August 16, 2017
A team of scientists led by chemists Stephen Martin and James Sahn at The University of Texas at Austin have discovered what they say is a powerful pain reliever that acts on a previously unknown pain pathway. The synthetic ...

Scientists use magnetic fields to remotely stimulate brain—and control body movements

August 16, 2017
Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities—an achievement that could lead to advances in ...

Scientists give star treatment to lesser-known cells crucial for brain development

August 16, 2017
After decades of relative neglect, star-shaped brain cells called astrocytes are finally getting their due. To gather insight into a critical aspect of brain development, a team of scientists examined the maturation of astrocytes ...

The nerve-guiding 'labels' that may one day help re-establish broken nervous connections

August 16, 2017
Scientists have identified a large group of biological 'labels' that guide nerves to ensure they make the correct connections and control different parts of the body. Although their research was conducted with fruit flies, ...

Navigation and spatial memory—new brain region identified to be involved

August 16, 2017
Navigation in mammals including humans and rodents depends on specialized neural networks that encode the animal's location and trajectory in the environment, serving essentially as a GPS, findings that led to the 2014 Nobel ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.