Scientists engineer mosquito immune system to fight malaria

December 22, 2011

Researchers at the Johns Hopkins Malaria Research Institute have demonstrated that the Anopheles mosquito's innate immune system could be genetically engineered to block the transmission of malaria-causing parasites to humans. In addition, they showed that the genetic modification had limited impact on the mosquito's fitness under laboratory conditions. The researchers' findings are published December 22nd in the Open Access journal PLoS Pathogens.

In this study, Dimopoulos and his team genetically engineered Anopheles mosquitoes to produce higher than normal levels of an Rel2 when they feed on blood. Rel2 acts against the in the mosquito by launching an immune attack involving a variety of anti-parasitic molecules. Through this approach, instead of introducing a new gene into the mosquito DNA, the researchers used one of the insect's own genes to strengthen its parasite-fighting capabilities.

According to the researchers, this type of genetically modified mosquito could be further developed and used to convert malaria-transmitting to Plasmodium-resistant mosquito populations. One possible obstacle for this approach is the fitness of the genetically modified malaria resistant mosquitoes, since they would have to compete with the natural malaria-transmitting mosquitoes. The researchers showed with their study that the Rel2 genetically modified mosquito strain lived as long, and laid as many eggs, as the non-modified wild type mosquitoes, thereby suggesting that their fitness had not become significantly impaired.

"Malaria is one of world's most serious public health problems. Mosquitoes and the malaria parasite are becoming more resistant to insecticides and drugs, and new control methods are urgently needed. We've taken a giant step towards the development of new mosquito strains that could be released to limit , but further studies are needed to render this approach safe and fail-proof," said Dimopoulos.

Explore further: Wolbachia bacteria reduce parasite levels and kill the mosquito that spreads malaria

Related Stories

Recommended for you

Snapshot turns T cell immunology on its head

October 6, 2015

Challenging a universally accepted, longstanding consensus in the field of immunity requires hard evidence. New research from the Australian Research Council Centre of excellence in advanced Molecular imaging has shown the ...

Four gut bacteria decrease asthma risk in infants

September 30, 2015

New research by scientists at UBC and BC Children's Hospital finds that infants can be protected from getting asthma if they acquire four types of gut bacteria by three months of age. More than 300 families from across Canada ...

Flu infection reveals many paths to immune response

September 28, 2015

A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological ...

Immune cells may help fight against obesity

September 15, 2015

While a healthy lifestyle and "good genes" are known to help prevent obesity, new research published on September 15 in Immunity indicates that certain aspects of the immune system may also play an important role. In the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.