Ultra short telomeres linked to osteoarthritis

Telomeres, the very ends of chromosomes, become shorter as we age. When a cell divides it first duplicates its DNA and, because the DNA replication machinery fails to get all the way to the end, with each successive cell division a little bit more is missed. New research published in BioMed Central's open access journal Arthritis Research & Therapy shows that cells from osteoarthritic knees have abnormally shortened telomeres and that the percentage of cells with ultra short telomeres increases the closer to the damaged region within the joint.

While the shortening of telomeres is an unavoidable side effect of getting older, telomeres can also shorten as a result of sudden cell damage, including oxidative damage. Abnormally short telomeres have been found in some types of cancer, possibly because of the rapid cell division the are forced to undergo.

There has been some evidence from preliminary work done on cultured cells that the average telomere length is also reduced in osteoarthritis (OA). A team of researchers from Denmark used newly developed technology (Universal single telomere length assay) to look in detail at the telomeres of cells taken from the knees of people who had undergone joint replacement surgery. Their results showed that average telomere length was, as expected, shortened in OA, but that also 'ultra short' telomeres, thought to be due to oxidative stress, were even more strongly associated with OA.

Maria Harbo who led this research explained, "We see both a reduced mean telomere length and an increase in the number of cells with ultra short telomeres associated with increased severity of OA, proximity to the most damaged section of the joint, and with senescence. Senescence can be most simply explained as biological aging and senescent cartilage within is unable to repair itself properly."

She continued, "The telomere story shows us that there are, in theory, two processes going on in OA. Age-related shortening of telomeres, which leads to the inability of cells to continue dividing and so to cell senescence, and ultra short telomeres, probably caused by compression stress during use, which lead to senescence and failure of the joint to repair itself. We believe the second situation to be the most important in OA. The damaged cartilage could add to the mechanical stress within the joint and so cause a feedback cycle driving the progression of the disease."

Related Stories

Position of telomeres in nucleus influences length

Jul 13, 2011

(PhysOrg.com) -- A study the latest issue of Nature Cell Biology sheds light on the mechanism controlling telomere length in budding yeast. In this publication, scientists from the Friedrich Miescher Instit ...

Recommended for you

Prompt diagnosis of psoriatic arthritis crucial

Oct 24, 2014

Research led by Conway Fellow, Professor Oliver FitzGerald in St Vincent's University Hospital shows that a delay of more than 6 months from initial symptoms to a diagnosis of psoriatic arthritis leads to poorer outcomes ...

Mummy remains refute antiquity of ankylosing spondylitis

Oct 20, 2014

Ankylosing spondylitis is a systemic disease that causes inflammation in the spinal joints and was thought to have affected members of the ancient Egyptian royal families. Now a new study published in Arthritis & Rheumatology, a jour ...

Arthritis sufferers excluded from everyday life

Oct 13, 2014

Arthritis is the second leading cause of disability in Australia with many sufferers so severely disabled they cannot engage in basic everyday activities, new UNSW research has found.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.