Breakdown of triglycerides in heart muscle boosts cardiac function

February 15, 2012

The heart relies heavily on oxidation of fatty acids for energy production. However, excess storage of fatty acids as triglycerides, within heart muscle cells, frequently observed in patients with obesity and diabetes, is often associated with cardiac dysfunction. The question remained: was this cause and effect? Now a team of investigators shows that baseline heart function "showed moderate, but significant improvement" in mouse models that overproduce an enzyme that breaks down these triglycerides, says principal investigator Jason Dyck, of the University of Alberta, Edmonton. The research is published in the February Molecular and Cellular Biology.

The investigators showed further that mice that overproduce the enzyme "were able to run 20% longer than the controls when subjected to a ," says first author Petra Kienesberger, of the University of Alberta.

Then, in experiments in which mouse models were surgically constructed to mimic hypertension, the researchers showed that "overproduction of the enzyme protects from the development of cardiac/contractile dysfunction under this pathological condition," says Kienesberger.

"Together, these data demonstrate for the first time that decreased myocardial triglyceride accumulation plays a role in regulating cardiac function at baseline as well as an important protective role in preventing in response to a severe pressure overload, as observed with hypertension," says Dyck.

"These findings are highly relevant to basic and clinical research," says Kienesberger. "They suggest that regulation of cardiac triglyceride content and breakdown plays a central role in mediating cardiac function, and that pharmacological modification of cardiac [enzymatic] activity [to break down triglyceride] could be used as therapy to improve contractile function of the diseased heart. However, it remains to be tested whether reducing triglycerides is also beneficial in obesity and diabetes. This concept… opens new avenues of research not previously identified."

The research was enabled only recently by new genetic tools that specifically target cardiac triglycerides and by a novel , in which triglyceride could be reduced by boosting the enzyme responsible for breaking it down, says Kienesberger.

Explore further: Enzyme prevents fatal heart condition associated with athletes

More information: P.C. Kienesberger, T. Pulinilkunnil, M.M.Y. Sung, J. Nagendran, G. Haemmerle, E.E. Kershaw, M.E. Young, P.E. Light, G.Y. Oudit, R. Zechner, and J.R.B. Dyck, 2012. Myocardial ATGL overexpression decreases the reliance on fatty acid oxidation and protects against pressure overload-induced cardiac dysfunction. Mol. Cell. Biol. 32:740-750.

Related Stories

Recommended for you

No new heart muscle cells in mice after the newborn period

November 5, 2015

A new study from Sweden's Karolinska Institutet shows that new heart muscle cells in mice are mainly formed directly after birth. After the neonatal period the number of heart muscle cells does not change, and A new study ...

Nanotechnology could spur new heart treatment

October 29, 2015

A new nanoparticle developed by University of Michigan researchers could be the key to a targeted therapy for cardiac arrhythmia, a condition that causes the heart to beat erratically and can lead to heart attack and stroke.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.