Scientists identify most lethal known species of prion protein

February 9, 2012
This is Scripps research professor Corinne Lasmézas. Credit: Photo by Randy Smith, courtesy of the Scripps Research Institute

Scientists from the Florida campus of The Scripps Research Institute have identified a single prion protein that causes neuronal death similar to that seen in "mad cow" disease, but is at least 10 times more lethal than larger prion species. This toxic single molecule or "monomer" challenges the prevailing concept that neuronal damage is linked to the toxicity of prion protein aggregates called "oligomers."

The study was published this week in an advance, online edition of the journal .

"By identifying a single molecule as the most of prion proteins, we've opened a new chapter in understanding how prion-induced neurodegeneration occurs," said Scripps Florida Professor Corinne Lasmézas, who led the new study. "We didn't think we would find from this toxic so close to what normally happens in the disease state. Now we have a powerful tool to explore the mechanisms of neurodegeneration."

In the study, the newly identified toxic form of abnormal prion protein, known as TPrP, caused several forms of ranging from apoptosis (programmed cell death) to autophagy, the self-eating of cellular components, as well as molecular signatures remarkably similar to that observed in the brains of prion-infected animals. The study found the most toxic form of prion protein was a specific structure known as alpha-helical.

New Paths to Explore

In addition to the insights it offers into prion diseases such as "mad cow" and a rare human form Creutzfeldt-Jakob disease, the study opens the possibility that similar neurotoxic proteins might be involved in neurodegenerative disorders such as Alzheimer's and Parkinson diseases.

In prion disease, infectious prions (short for proteinaceous infectious particles), thought to be composed solely of protein, have the ability to reproduce, despite the fact that they lack DNA and RNA. Mammalian cells normally produce what is known as cellular prion protein or PrP; during infection with a prion disease, the abnormal or misfolded protein converts the normal host into its disease form.

Lasmézas explains that prion diseases are similar to Alzheimer's and other protein misfolding diseases in that they are caused by the toxicity of a misfolded host protein. Recent work, as reported in The New York Times, also found that diseases such as Alzheimer's resemble prion diseases by spreading from cell to cell.

The new study adds another twist. "Until now, it was thought that oligomers of proteins are toxic in all these diseases," Lasmézas said. "Since we found for the first time that an abnormally folded monomer is highly toxic, it opens up the possibility that this might be true also for some other protein misfolding diseases as well."

Explore further: New prion protein may offer insight into mad cow disease

More information: The first author of the study, "Highly Neurotoxic Monomeric α-Helical Prion Protein," is Minghai Zhou of Scripps Research. Other authors include Gregory Ottenberg and Gian Franco Sferrazza also of Scripps Research. For more information on the study, see www.pnas.org/content/early/2012/02/07/1118090109.abstract

Related Stories

New prion protein may offer insight into mad cow disease

August 16, 2007

Scientists have discovered a new protein that may offer fresh insights into brain function in mad cow disease. “Our team has defined a second prion protein called ‘Shadoo’, that exists in addition to the well-known ...

Prions show their good side

May 7, 2008

Prions, the infamous agents behind mad cow disease and its human variation, Creutzfeldt-Jakob Disease, also have a helpful side. According to new findings from Gerald Zamponi and colleagues, normally functioning prions prevent ...

Is there more to prion protein than mad cow disease?

September 30, 2008

Prion protein, a form of protein that triggers BSE, is associated with other brain diseases in cattle, raising the possibility of a significant increase in the range of prion disease. Publishing their findings in the open ...

Mutant proteins result in infectious prion disease in mice

December 5, 2008

A worldwide group of scientists has created an infectious prion disease in a mouse model, in a step that may help unravel the mystery of this progressive disease that affects the nervous system in humans and animals. The ...

Study finds two gene classes linked to new prion formation

May 26, 2011

Unlocking the mechanisms that cause neurodegenerative prion diseases may require a genetic key, suggest new findings reported by University of Illinois at Chicago distinguished professor of biological sciences Susan Liebman.

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

that_guy
not rated yet Feb 09, 2012
Science: Finding new a horrible ways for us to kill ourselves since 1280 bc. :p
Telekinetic
not rated yet Feb 09, 2012
The researcher in the photo really should've worn a mask while handling the prions.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.