Inside the brains of jurors: Neuroscientists reveal brain activity associated with mitigating criminal sentences

March 28, 2012 By Kimm Fesenmaier
Credit: Caltech

(Medical Xpress) -- When jurors sentencing convicted criminals are instructed to weigh not only facts but also tricky emotional factors, they rely on parts of the brain associated with sympathy and making moral judgments, according to a new paper by a team of neuroscientists. Using brain-imaging techniques, the researchers, including Caltech's Colin Camerer, found that the most lenient jurors show heightened levels of activity in the insula, a brain region associated with discomfort and pain and with imagining the pain that others feel.

The findings provide insight into the role that emotion plays in jurors' decision-making processes, indicating a close relationship between sympathy and mitigation.

In the study, the researchers, led by Makiko Yamada of National Institute of Radiological Sciences in Japan, considered cases where juries were given the option to lessen the sentences for convicted murderers. In such cases with "mitigating circumstances," are instructed to consider factors, sometimes including emotional elements, that might cause them to have sympathy for the criminal and, therefore, shorten the sentence. An example would be a case in which a man killed his wife to spare her from a more painful death, say, from a

"Finding out if jurors are weighing sympathy reasonably is difficult to do, objectively," says Colin Camerer, the Robert Kirby Professor of Behavioral Finance and Economics at Caltech. "Instead of asking the jurors, we asked their brains."

The researchers scanned the brains of citizens (potential jurors) while the participants read scenarios adapted from actual murder cases with mitigating circumstances. In some cases, the circumstances were sympathy-inducing; in others, where, for example, a man became enraged when an ex-girlfriend refused him, they were not. The scientists used functional magnetic resonance imaging (fMRI), a type of brain scanning that tracks increases in oxygenated blood flow, indicating heightened brain activity. The participants also had their brains scanned when they determined whether to lessen the sentences, and by how much.  

The team found that sympathy activated the dorsomedial prefrontal cortex, precuneus, and temporo-parietal junction— associated with moral conflict and thinking about the feelings of others. Similarly, the jurors had increased activity in these regions during sentencing when the mitigating circumstances earned their sympathy. In those cases, they also delivered shorter hypothetical sentences.

In addition to Camerer and Yamada, coauthors on the new paper, "Neural circuits in the brain that are activated when mitigating criminal sentences," are Saori Fujie, Harumasa Takano, Hiroshi Ito, Tetsuya Suhara, and Hidehiko Takahashi of the National Institute of Radiological Sciences; Motoichiro Kato of the Keio University of Medicine; and Tetsuya Matsuda of Tamagawa University Brain Science Institute. Yamada is also affiliated with Tamagawa University Brain Science Institute and Kyoto University School of Medicine; she and Takahashi are additionally affiliated with the Japan Science and Technology Agency.

Explore further: Brain scan reveals how our brain processes jokes

More information:

Related Stories

Brain scan reveals how our brain processes jokes

June 30, 2011

(Medical Xpress) -- A new Medical Research Council (MRC) study which has uncovered how our brain responds to jokes, could help to determine whether patients in a vegetative state can experience positive emotions.

Recommended for you

How lying takes our brains down a 'slippery slope'

October 24, 2016

Telling small lies desensitises our brains to the associated negative emotions and may encourage us to tell bigger lies in future, reveals new UCL research funded by Wellcome and the Center for Advanced Hindsight.

Robotic tutors for primary school children

October 24, 2016

The use of robotic tutors in primary school classrooms is one step closer according to research recently published in the open access journal Frontiers in Computational Neuroscience.

Mouse decision-making more complex than once thought

October 24, 2016

Working with dot-counting mice running through a virtual-reality maze, scientists from Harvard Medical School have found that in order to navigate space rodent brains rely on a cascade of neural signals that culminate in ...

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.