Researchers gain new insight into prefrontal cortex activity

March 5, 2012
Brain

The brain has a remarkable ability to learn new cognitive tasks while maintaining previously acquired knowledge about various functions necessary for everyday life. But exactly how new information is incorporated into brain systems that control cognitive functions has remained a mystery.

A study by researchers at Wake Forest Baptist Medical Center and the McGovern Institute of the Massachusetts Institute of Technology shows how new information is encoded in neurons of the , the area of the brain involved in planning, decision making, and learning.

"In this study we were able to isolate activity directly from the brain, allowing us to 'see' what was happening in the prefrontal cortex before and after a new task was learned," said Christos Constantinidis, Ph.D., associate professor of neurobiology and anatomy at Wake Forest Baptist and senior author of the study, published in the March 5 online edition of .

To gain insight into how learning a new task affects the prefrontal cortex, the researchers analyzed the of neurons before and after training for the performance in two short-term memory tests. Two monkeys initially looked at a computer screen while various shapes, such as squares and circles, were displayed, and researchers recorded the electrical activity occurring in the brain. The same animals were then trained to recognize the various shapes, and to remember whether two symbols matched each other.

Using of the neuronal recordings, the researchers compared data to assess what information was present before training and what new information arose while learning a new task. They found that learning was associated with activation of a small number of neurons that were highly specialized for the new task, while the same neurons maintained the existing information that was present before training.

"In essence, this select group of neurons was able to multitask by learning new information while retaining information they were already specialized for," Constantinidis said. "Our results show that although there was little change in the amount of basic stimulus information that neurons encoded before training, more complex information about whether the symbols matched became incorporated throughout the prefrontal cortex after training."

Overall these findings shed light on how new information is incorporated into the prefrontal cortex activity and how neural activity codes information, which should lead to richer theories of how the prefrontal cortex controls behavior and how information is encoded in neural activity more generally.

"We hope that our findings will help others who work with patients who have short-term memory problems resulting from strokes or traumatic brain injuries," Constantinidis said. "Computerized training to perform , like those used in our study, has shown promise in cognitive rehabilitation, and for treatment of mental illnesses and conditions, such as schizophrenia and ADHD."

Related Stories

Neural balls and strikes: Where categories live in the brain

January 15, 2012

Hundreds of times during a baseball game, the home plate umpire must instantaneously categorize a fast-moving pitch as a ball or a strike. In new research from the University of Chicago, scientists have pinpointed an area ...

Recommended for you

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

Sleep makes our memories more accessible, study shows

July 27, 2015

Sleeping not only protects memories from being forgotten, it also makes them easier to access, according to new research from the University of Exeter and the Basque Centre for Cognition, Brain and Language. The findings ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.