Human attention to a particular portion of an image alters the way the brain processes visual cortex responses to that i

March 30, 2012
Figure 1: A schematic diagram of the contrast discrimination task, showing the focal cue trial (top row) and the distributed cue trial (bottom row). The contrast within the top right circle increases from the first interval (second column) to the second interval (fourth column). The third column is the interstimulus interval. Credit: Reproduced, with permission, from Ref. 1 © 2011 Elsevier Inc.

Our ability to ignore some, but not other stimuli, allows us to focus our attention and improve our performance on a specific task. The ability to respond to visual stimuli during a visual task hinges on altered brain processing of responses within the visual cortex at the back of the brain, where visual information is first received from the eyes. How this occurs was recently demonstrated by an international team of researchers led by Justin Gardner at the RIKEN Brain Science Institute in Wako, Japan.

In a contrast discrimination task, the researchers showed three observers a of a group of four circles, each containing grey and white bars that created stripes of different contrasts (Fig. 1). After a short pause, the researchers showed the circles again, but the contrast within one of the circles was different. The observers were instructed to choose which group of circles contained the higher contrast.

In ’focal cue trials’, an arrow directed the observers’ attention to a particular circle. In ‘distributed cue’ trials’, four arrows directed their attention diffusely, across all four circles. Gardner and colleagues found that the observers’ performance was better in the focal cue trials. 

Using a magnetic resonance imaging (MRI) scanner, the research team was able to map the precise location within the that was activated by the within each of the four circles. During the contrast discrimination task, Gardner and colleagues could therefore measure the observers’ visual cortex activity elicited by the stimuli. In this way, they could correlate brain activity in the visual cortex with the observers’ attention and their choice of contrasting circles.

Visual cortex responses tended to be largest when the observers were paying attention to a particular target circle, and smallest when they were ignoring a circle. The researchers determined that the largest visual cortex responses to the stimuli guided the eventual choice of each observer, leading to enhanced performance on the visual task. 

“We used computational modeling to test various hypotheses about how attention affects brain processing of visual information to improve behavioral performance,” explains Gardner. “We concluded that the observers’ causes their brains to select the largest cortical response to guide contrast choice, since we found that an ‘efficient selection’ model best explained the behavioral and fMRI data,” he says.

If the findings extend to other senses, such as hearing, researchers may begin to understand how humans make sense of a perceptually cluttered world.

Explore further: Whether we know it or not, we can 'see' through one eye at a time

More information: Pestilli, F., et al. Attentional enhancement via selection and pooling of early sensory responses in human visual cortex. Neuron 72, 832–846 (2011).

Related Stories

What the brain sees after the eye stops looking

November 8, 2011

(Medical Xpress) -- When we gaze at a shape and then the shape disappears, a strange thing happens: We see an afterimage in the complementary color. Now a Japanese study has observed for the first time an equally strange ...

Mouse brains keyed to speed

January 25, 2012

(Medical Xpress) -- It’s hard to be a mouse. You’re a social animal, but your fellows are small and scattered. You’re a snack to a bestiary of fast, eagle-eyed predators, not least the eagle. You’re fast ...

Recommended for you

Scientists put some muscle behind their research

May 6, 2016

Michigan State University researchers used an old-fashioned neurobiology technique to explore new avenues for treatments to reverse a late-onset neurodegenerative disease that robs men of the capacity to walk, run, chew and ...

Study shows how brain switches into memory mode

May 5, 2016

Researchers from Germany and the USA have identified an important mechanism with which memory switches from recall to memorization mode. The study may shed new light on the cellular causes of dementia. The work was directed ...

Researchers track critical development in the young brain

May 5, 2016

Much like electricity traveling down wires, nerve impulses in our brain travel along nerve fibers. And just as wires need insulation to function well, nerve fibers, too, rely on a kind of insulation called myelin, a fatty ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.