Tracking proteins behaving badly provides insights for treatments of brain diseases

(Medical Xpress) -- A research team led by the University of Melbourne has developed a novel technique that tracks diseased proteins behaving badly by forming clusters in brain diseases such as Huntington’s and Alzheimer’s.

The technique published in today is the first of its kind to rapidly identify and track the location of diseased proteins inside cells and could provide insights into improved treatments for and others such as cancer.
 
Developed by Dr Danny Hatters and his team of the Department of Biochemistry and Molecular Biology at the Bio21 Institute, University of Melbourne, the technique uses a flow cytometer to track the clusters in cells at a rate of 1000s per minute. In addition, cells with clustered proteins can be recovered for further study - neither of which had been possible before.
 
“Being able to identify locations of diseased proteins in cells enables drugs to be developed to target different stages of disease development,” he said.
 
He said the technique has application to many neurological diseases, which are characterised by formations of proteins clustering such as in Alzheimer’s, Parkinson’s and Huntington’s diseases.

“A challenge for researchers has been trying to understand how proteins and cause damage in diseases like Huntington’s and Alzheimer’s. This is the first approach which could enable us to answer those questions.”
 
“Now we can see how the proteins form clusters inside a cell and can examine which cell functions are being damaged at different steps of the clustering process.”

“No drugs at this stage can stop the clustering process in Huntington’s disease for example. This sets up platforms to develop drugs that block the formation of clusters,” Dr Hatters said.
 
The technique can also be used to examine how signaling processes occur such as when genes are switched on and off.
 
“It has application to track events of abnormal gene signaling such as in cancer ” Dr Hatters said.
 
“This technique offers hope in improving treatments for a range of neurological and other conditions,” he said.
 
This work builds on Dr Hatters previous research where he and his team identified the behaviour of diseased Huntington proteins forming into clusters.
 
The work was done in collaboration with Monash University.

add to favorites email to friend print save as pdf

Related Stories

Brain cells created from patients' skin cells

Feb 07, 2012

(Medical Xpress) -- Cambridge scientists have, for the first time, created cerebral cortex cells – those that make up the brain’s grey matter – from a small sample of human skin.  The researchers’ ...

Scientists expose important new weak spot in cancer cells

Dec 05, 2011

(Medical Xpress) -- Cancer Research UK scientists have discovered that cancer cells can ‘bag up and bin’ a toxic protein to cheat death – revealing a new Achilles heel in cancer cells that could be targeted ...

New target for Alzheimer's drugs

Feb 09, 2012

(Medical Xpress) -- Biomedical scientists at the University of California, Riverside have identified a new link between a protein called beta-arrestin and short-term memory that could open new doors for the ...

Recommended for you

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.