Research offers new clues to prevent infection in cardiac devices

April 10, 2012

Bacteria such as Staphylococcus aureus, the 'superbug' behind MRSA, can be a major problem for patients who have a medical implant, such as a replacement heart valve or pacemaker.

Bacteria are able to form colonies -- called biofilms -- on the implanted device, which can lead to wider infections such as endocarditis, a of the heart.

Research led by scientists in the Department of Biology at the University of York has shed new light on how these "" structures are formed. Biofilms help the bacteria within to avoid attack from the immune system and antibiotics.

Often the only way to tackle the resulting infection is to remove the affected device, which can be a difficult and invasive process.

The team from the University of York, led by Professor Jennifer Potts, included British Heart Foundation-funded PhD student Dominika Gruszka. They found that the bacteria release long, thin protein chains to connect with other bacteria or mesh with other bacterial products. The chains have a highly unusual repetitive structure which could not have been predicted and provides important clues to how they might work.

A similar protein is found on the surface of , another commonly found in device infections.

Professor Potts, a BHF Senior Research Fellow, said: "This discovery provides an important step forward in understanding how biofilms form. It should help in the development of new ways of preventing infection of cardiac devices by these bacteria."

Dr Hélène Wilson, Research Advisor at the British Heart Foundation, which co-funded the study, said:

"These clusters of bacteria on implanted devices can be a problem for heart patients because they are very difficult to treat with antibiotics. Often the only way to tackle the infection is to remove the affected device, which can be a difficult and invasive process and lead to further complications.

"This discovery is an important step towards improving our understanding of how these biofilms are structured, which could help lead to new treatments or new ways to prevent them forming."

The research, which also involved scientists at Trinity College and the Universities of Cambridge, Huddersfield, Leeds, is published in PNAS Online Early Edition.

More information: The paper ‘Staphylococcal biofilm-forming protein has a contiguous rod-like structure’ is published in PNAS Online Early Edition.

Related Stories

Recommended for you

Flu study, on hold, yields new vaccine technology

September 2, 2015

Vaccines to protect against an avian influenza pandemic as well as seasonal flu may be mass produced more quickly and efficiently using technology described today by researchers at the University of Wisconsin-Madison in the ...

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.