Research offers new clues to prevent infection in cardiac devices

Bacteria such as Staphylococcus aureus, the 'superbug' behind MRSA, can be a major problem for patients who have a medical implant, such as a replacement heart valve or pacemaker.

Bacteria are able to form colonies -- called biofilms -- on the implanted device, which can lead to wider infections such as endocarditis, a of the heart.

Research led by scientists in the Department of Biology at the University of York has shed new light on how these "" structures are formed. Biofilms help the bacteria within to avoid attack from the immune system and antibiotics.

Often the only way to tackle the resulting infection is to remove the affected device, which can be a difficult and invasive process.

The team from the University of York, led by Professor Jennifer Potts, included British Heart Foundation-funded PhD student Dominika Gruszka. They found that the bacteria release long, thin protein chains to connect with other bacteria or mesh with other bacterial products. The chains have a highly unusual repetitive structure which could not have been predicted and provides important clues to how they might work.

A similar protein is found on the surface of , another commonly found in device infections.

Professor Potts, a BHF Senior Research Fellow, said: "This discovery provides an important step forward in understanding how biofilms form. It should help in the development of new ways of preventing infection of cardiac devices by these bacteria."

Dr Hélène Wilson, Research Advisor at the British Heart Foundation, which co-funded the study, said:

"These clusters of bacteria on implanted devices can be a problem for heart patients because they are very difficult to treat with antibiotics. Often the only way to tackle the infection is to remove the affected device, which can be a difficult and invasive process and lead to further complications.

"This discovery is an important step towards improving our understanding of how these biofilms are structured, which could help lead to new treatments or new ways to prevent them forming."

The research, which also involved scientists at Trinity College and the Universities of Cambridge, Huddersfield, Leeds, is published in PNAS Online Early Edition.

More information: The paper ‘Staphylococcal biofilm-forming protein has a contiguous rod-like structure’ is published in PNAS Online Early Edition.

Related Stories

New step forward in search for solution to infection puzzle

date Aug 06, 2008

Scientists at the University of York have helped to reveal more about the way bacteria can attach to human tissues. The study could help in the development of new treatments for serious heart conditions such as infective ...

Recommended for you

Sex matters ... even for liver cells

date 1 hour ago

Female liver cells, and in particular those in menopaused women, are more susceptible to adverse effects of drugs than their male counterparts, according to new research carried out by the JRC. It is well ...

Caring for blindness: A new protein in sight?

date 2 hours ago

Vasoproliferative ocular diseases are responsible for sight loss in millions of people in the industrialised countries. Many patients do not currently respond to the treatment offered, which targets a specific ...

When genes are expressed in reverse

date 2 hours ago

Genes usually always be expressed as in Western writing: from left to right on the white canvas of our DNA. So when we speak of the activity of our genome, in fact we are referring to the expression of genes ...

Technique could speed biologic drugs

date 7 hours ago

Antibodies are specific molecules that can lock onto a particular cellular structure to start, stop or otherwise temper a biological process. Because they are so specific, antibodies are at the forefront ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.