Fragile X syndrome can be reversed in adult mouse brain

A recent study finds that a new compound reverses many of the major symptoms associated with Fragile X syndrome (FXS), the most common form of inherited intellectual disability and a leading cause of autism. The paper, published by Cell Press in the April 12 issue of the journal Neuron, describes the exciting observation that the FXS correction can occur in adult mice, after the symptoms of the condition have already been established.

Fragile X patients suffer from a complex set of neuropsychiatric symptoms of varying severity which include anxiety, hyperactivity, learning and memory deficits, low IQ, social and communication deficits, and seizures. Previous research has suggested that inhibition of mGlu5, a subtype of receptor for the glutamate, may be useful for ameliorating many of the major symptoms of the disease.

The new study, a collaboration between a group at F. Hoffmann-La Roche Ltd. in Switzerland, led by Dr. Lothar Lindemann, and a group at the Picower Institute for Learning at the Massachusetts Institute of Technology, led by Dr. Mark Bear, used a newly developed mGlu5 inhibitor called CTEP to examine whether pharmacologic inhibition of mGlu5 could reverse FXS symptoms.

The researchers used a mouse model of FXS and administered CTEP after the brain had matured. "We found that even when treatment with CTEP was started in , it reduced a wide range of FXS symptoms, including learning and and auditory hypersensitivity, as well as morphological changes and signaling abnormalities characteristic of the disease," reports Dr. Lindemann.

Although the CTEP drug itself is not being developed for humans, the findings have significance for human FXS. "The most important implications of our study are that many aspects of FXS are not caused by an irreversible disruption of brain development, and that correction of the altered glutamate signaling can provide widespread ," explains Dr. Bear.

The researchers agree that future work may shed light on treatment of FXS in humans. "It will be of great interest to see whether treatment of FXS in human patients can be addressed in a similar broad fashion and with a similar magnitude as was suggested by our preclinical data," conclude Dr. Lindemann and Dr. Bear. "We anticipate that disturbed signaling can be corrected with other small molecule therapies targeting mGlu5 that are currently being used in human clinical trials."

More information: Michalon et al.: “Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice.” DOI:10.1016/j.neuron.2012.03.009

Related Stories

New insight into fragile gene

Jul 22, 2011

(Medical Xpress) -- New research could change the way health professionals identify and treat late-onset dementia.

Recommended for you

Researchers unlock mystery of skin's sensory abilities

Dec 19, 2014

Humans' ability to detect the direction of movement of stimuli in their sensory world is critical to survival. Much of this stimuli detection comes from sight and sound, but little is known about how the ...

Tackling neurotransmission precision

Dec 18, 2014

Behind all motor, sensory and memory functions, calcium ions are in the brain, making those functions possible. Yet neuroscientists do not entirely understand how fast calcium ions reach their targets inside ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.