Why do the different people's bodies react differently to a high-fat diet?

April 26, 2012

Gut flora, otherwise knows as gut microbiota, are the bacteria that live in our digestive tract. There are roughly one thousand different species of bacteria, that are nourished partly by what we eat. Each person has their own specific gut flora and metabolism and these differ according to our dietary habits. Previous studies in mice have shown that a high-fat diet is capable of causing an imbalance in the gut flora, thus causing metabolic diseases such as diabetes or obesity.

Rémy Burcelin's research team spent three months studying how a fatty (a diabetogenic but not obesitogenic diet) diet affected the of male mice of the same age, all with the same genetic background. Most of the mice developed diabetes while remaining thin, whereas some remained thin but did not develop diabetes. Why is this so?

In order to confirm the theory that gut flora affects the way in which our body reacts to a high-fat diet, the research team looked at the microbial profile of different types of mice (thin and diabetic and thin and non-diabetic, which indicates two phenotypes). They showed that there was a difference in the quantities of gut bacteria between diabetic and non-diabetic mice. The thin but diabetic mice presented a flora composed mainly of "bacteroidetes" type bacteria, unlike the thin and non-diabetic mice that presented a flora composed mainly of "firmicutes" type bacteria.

So is gut flora the cause or the result of metabolic disorders? To find the answer to this question, Rémy Burcelin's team directly modified the gut flora of a group of mice by adding dietary fibers and gluco-oligosaccharides to their high-fat diet. "By adding these fibers, we modulated most of the physiological characteristics. The metabolism of the mice that we treated with these fibers was similar to that of the thin, non-diabetic mice.

But the gut flora of the mice treated with fibers changed greatly compared to that of the other phenotypes observed", says Matteo Serino.

Rémy Burcelin's team came to the conclusion that "the gut flora could guide the towards developing diabetes or not, depending on its profile". "Although we cannot compare the bacterial flora of a mouse with that of a human, because there is only 2% similarity, certain inflammatory mechanisms caused by certain bacteria such as Faecalibacterium prausnitzii seem to be identical". The researchers think that the bacteria present in the gut flora could be an indication as to whether or not an individual will develop diabetes. "It is possible that by adding dietary fibers that target the gut flora, we could prevent the development of such as diabetes, even in persons who have a high-fat diet".

Explore further: Resistant gut bacteria will not go away by themselves

More information: dx.doi.org/10.1136/gutjnl-2011-301012

Related Stories

Resistant gut bacteria will not go away by themselves

June 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

Gut bacteria can cause obesity

February 12, 2010

Diet, exercise and genes are not the only factors which determine if someone can become obese. The composition of the intestinal bacteria may also account for a person's obesity. This is the contention of Wageningen microbiologists ...

Safe clearance of salmonella

September 14, 2010

Individuals with an intact complex gut flora are more likely to clear Salmonella after an infection than individuals with an altered, less complex gut flora. This is suggested by results from a mouse model for Salmonella ...

Healthy gut flora could prevent obesity

May 25, 2011

Poor gut flora is believed to trigger obesity. In the same way, healthy gut flora could reduce the risk. This has shown to be the case in tests on rats.

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.