New yeast prion helps cells survive

April 23, 2012
MOD+ yeast contain Mod5 aggregates (upper) and acquire resistance to an antifungal agent, fluconazole (lower). Credit: RIKEN

One of the greatest mysterious in cellular biology has been given a new twist thanks to findings reported in Science. Researchers at the RIKEN Brain Science Institute show that prions, proteins that transmit heritable information without DNA or RNA, can contribute to drug resistance and cellular adaptation. Their discovery of a yeast prion with these properties demonstrates the active role of the prion conversion in cellular fitness adaptation, providing new insights into the potentially broader function of prions in living organisms.

Since their discovery in the 1960s, the class of misfolded proteins known as prions has posed a fundamental challenge to the foundation of : the idea that heritable information flows from DNA and RNA to protein, but never from protein to any other molecule. Contrary to this rule, prions are able to transmit information from one molecule to another through the transmission of their misfolded shape, with devastating consequences in diseases such as and Creutzfeldt-Jakob disease. The broader implications of this unusual transmission mechanism, however, are not well understood.

Among these implications, research on yeast prions has suggested that beyond their well-known role in diseases, some prions may confer survival advantages by helping organisms respond to environmental stress. To explore this idea, the BSI research team screened a wide range of different genes in for previously-undiscovered prions. Out of 6000 genes screened, they found a new yeast prion protein "Mod5" with the unusual property that it lacks the glutamine and asparagine-rich amino acid sequences characteristic of other yeast prions. Sequences like these are thought to contribute to forming amyloid aggregates, the mechanism by which prions propagate.

Despite lacking these sequences, Mod5 forms amyloid aggregates just like other yeast prions. Unlike the destructive role such aggregates play in well-known prion diseases, however, the researchers showed that Mod5 aggregates actually help the yeast, by granting it cellular resistance to antifungal agents. This advantage is so important that the yeast actually increases prion conversion when the pressure is on, as the researchers found when they applied antifungal drugs to the yeast.

These results demonstrate that the Mod5 yeast prion contributes to cell survival under environmental stress, through selection playing a key role in evolutionary adaptation. This insight marks a breakthrough in our understanding of the evolutionary role of prions and their unique form of inheritance, promising new avenues in the battle to contain and treat some of the world's most dangerous infectious diseases.

Related Stories

Study finds two gene classes linked to new prion formation

May 26, 2011

Unlocking the mechanisms that cause neurodegenerative prion diseases may require a genetic key, suggest new findings reported by University of Illinois at Chicago distinguished professor of biological sciences Susan Liebman.

Recommended for you

A cheaper, high-performance prosthetic knee

July 30, 2015

In the last two decades, prosthetic limb technology has grown by leaps and bounds. Today, the most advanced prostheses incorporate microprocessors that work with onboard gyroscopes, accelerometers, and hydraulics to enable ...

Crystal clear images uncover secrets of hormone receptors

July 31, 2015

Many hormones and neurotransmitters work by binding to receptors on a cell's exterior surface. This activates receptors causing them to twist, turn and spark chemical reactions inside cells. NIH scientists used atomic level ...

Flow means 'go' for proper lymph system development

July 27, 2015

The lymphatic system provides a slow flow of fluid from our organs and tissues into the bloodstream. It returns fluid and proteins that leak from blood vessels, provides passage for immune and inflammatory cells from the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.