Understanding how our brain perceives space

Understanding how our brain perceives space

European scientists looked into the cellular properties of neurons responsible for space coordination. Insight into the neuronal network of the entorhinal cortex will help understand what determines space and movement perception, and also how it is linked to brain-related disorders.

The ability to find one’s way is performed in a special site of the mammalian cortex known as the entorhinal cortex. Information regarding place, direction and destination is processed in specialised neurons called grid cells. These cells present with specific spatially firing fields that repeat at regular intervals and have been found to scale up progressively along the dorsal-ventral axis.

Further dissection of this neural map was the subject of the EU-funded project ‘Spatial representation in the entorhinal neural circuit’ (Entorhinal Circuits). More specifically, scientists hypothesised that the topographic expansion of grid cells paralleled changes in cellular properties and particularly in the current (Ih) which went through hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels.

Using transgenic animals with forebrain-specific knockout of the transmembrane protein HCN1, researchers found that HCN1 modulated grid cell properties, especially the size and spacing of the grid fields. This clearly indicated that HCN1 was crucial for the spatial representation in the entorhinal circuit. It also implies that during self-motion–based navigation, the current that goes through HCN1 is responsible for transforming movement signals to spatial firing fields.

Entorhinal Circuits results offered unique insights into some of the fundamental principles of neuronal assembly and microcircuit operation in the mammalian . The generated knowledge will hopefully shed light into the role of the in various neuronal diseases like Alzheimer’s and schizophrenia.

Related Stories

Better understanding of mapmaking in the brain

date Aug 09, 2010

"Grid cells," which help the brain map locations, have been found for the first time outside of the hippocampus in the rat brain, according to new research from the Norwegian University of Science and Technology (NTNU). The ...

Brain circuits connected with memory discovered

date Nov 07, 2011

(Medical Xpress) -- A new study published last week in Science reveals the discovery of a brain pathway that helps us link events that happen close together and play a role in memories.

Recommended for you

Diet rich in methionine may promote memory loss

date 17 hours ago

Memory loss has recently been associated with excessive silencing of genes through a process called methylation. Researchers at the University of Louisville investigated the effects of a diet rich in methionine—an amino ...

Intelligent neuroprostheses mimic natural motor control

date Mar 30, 2015

Neuroscientists are taking inspiration from natural motor control to design new prosthetic devices that can better replace limb function. In new work, researchers have tested a range of brain-controlled devices ...

Researchers create 'Wikipedia' for neurons

date Mar 30, 2015

The decades worth of data that has been collected about the billions of neurons in the brain is astounding. To help scientists make sense of this "brain big data," researchers at Carnegie Mellon University ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.