Understanding how our brain perceives space

May 28, 2012
Understanding how our brain perceives space

European scientists looked into the cellular properties of neurons responsible for space coordination. Insight into the neuronal network of the entorhinal cortex will help understand what determines space and movement perception, and also how it is linked to brain-related disorders.

The ability to find one’s way is performed in a special site of the mammalian cortex known as the entorhinal cortex. Information regarding place, direction and destination is processed in specialised neurons called grid cells. These cells present with specific spatially firing fields that repeat at regular intervals and have been found to scale up progressively along the dorsal-ventral axis.

Further dissection of this neural map was the subject of the EU-funded project ‘Spatial representation in the entorhinal neural circuit’ (Entorhinal Circuits). More specifically, scientists hypothesised that the topographic expansion of grid cells paralleled changes in cellular properties and particularly in the current (Ih) which went through hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels.

Using transgenic animals with forebrain-specific knockout of the transmembrane protein HCN1, researchers found that HCN1 modulated grid cell properties, especially the size and spacing of the grid fields. This clearly indicated that HCN1 was crucial for the spatial representation in the entorhinal circuit. It also implies that during self-motion–based navigation, the current that goes through HCN1 is responsible for transforming movement signals to spatial firing fields.

Entorhinal Circuits results offered unique insights into some of the fundamental principles of neuronal assembly and microcircuit operation in the mammalian . The generated knowledge will hopefully shed light into the role of the in various neuronal diseases like Alzheimer’s and schizophrenia.

Explore further: Electrical oscillations critical for storing spatial memories in brain: study

Related Stories

Brain circuits connected with memory discovered

November 7, 2011

(Medical Xpress) -- A new study published last week in Science reveals the discovery of a brain pathway that helps us link events that happen close together and play a role in memories.

Recommended for you

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

New mechanism discovered behind infant epilepsy

September 3, 2015

Scientists at Karolinska Institutet and Karolinska University Hospital in Sweden have discovered a new explanation for severe early infant epilepsy. Mutations in the gene encoding the protein KCC2 can cause the disease, hereby ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.