Brain circuits connected with memory discovered

November 7, 2011 by Deborah Braconnier report
Brain

(Medical Xpress) -- A new study published last week in Science reveals the discovery of a brain pathway that helps us link events that happen close together and play a role in memories.

The research, led by Dr. Junghyup Suh from the Massachusetts Institute of Technology found the connection between the and the . The entorhinal cortex receives the information from areas around the brain and then passes the information to the hippocampus.

To test this pathway, the researchers used specifically bred mice. These mice had a which allowed the cells in the entorhinal cortex to be disabled by removing from the food the mice were fed.

When mice are presented with a sound and then within 20 seconds given a shock, they quickly learn to associate this sound with the coming shock and freeze in their tracks when the sound is heard. This experiment was conducted on the mice with the disabled entorhinal cortex and researchers discovered that the mutant mice were less likely to react to the sound.

However, when the researchers administered the shock at the same time as the sound, both mice behaved the same. This shows that there is a connection between the connection of time and the entorhinal cortex.

Another experiment used a water maze and a small platform where the mice could find to stop swimming and rest. They were allowed to find the platform and then 30 seconds later placed in the water maze. The were less likely to be able to find the platform even though they had just found it 30 seconds prior. The linking of memories to what was currently happening appeared difficult for these mice.

When it comes to Alzheimer’s disease, patients have difficulty with memory. In Alzheimer’s, the entorhinal cortex is one of the first areas of the brain that is damaged.

Explore further: Electrical stimulation of brain boosts birth of new cells, may improve memory

More information: Entorhinal Cortex Layer III Input to the Hippocampus Is Crucial for Temporal Association Memory, Science DOI: 10.1126/science.1210125

ABSTRACT
Associating temporally discontinuous elements is crucial for the formation of episodic and working memories that depend on the hippocampal-entorhinal network. However, the neural circuits subserving these associations have remained unknown. The layer III inputs of the entorhinal cortex to the hippocampus may contribute to this process. To test this hypothesis, we generated a transgenic mouse in which these inputs are specifically inhibited. The mutant mice displayed significant impairments in spatial working memory tasks and in the encoding phase of trace fear-conditioning. These results indicate a critical role of the entorhinal cortex layer III inputs to the hippocampus in temporal association memory.

Related Stories

Recommended for you

Researchers discover new 'GPS' neuron

May 29, 2017

An international research team led by the University of Amsterdam researchers Jeroen Bos, Martin Vinck and Cyriel Pennartz has identified a new type of neuron which might play a vital role in humans' ability to navigate their ...

Neurons can learn temporal patterns

May 29, 2017

Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals. This is what emerges from a study at Lund University in Sweden.

People match confidence levels to make decisions in groups

May 26, 2017

When trying to make a decision with another person, people tend to match their confidence levels, which can backfire if one person has more expertise than the other, finds a new study led by UCL and University of Oxford researchers.

Optic probes shed light on binge-eating

May 26, 2017

Activating neurons in an area of the brain not previously associated with feeding can produce binge-eating behavior in mice, a new Yale study finds.

Study finds gray matter density increases during adolescence

May 26, 2017

For years, the common narrative in human developmental neuroimaging has been that gray matter in the brain - the tissue found in regions of the brain responsible for muscle control, sensory perception such as seeing and hearing, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.