Brain circuits connected with memory discovered

November 7, 2011 by Deborah Braconnier, Medical Xpress report
Brain

(Medical Xpress) -- A new study published last week in Science reveals the discovery of a brain pathway that helps us link events that happen close together and play a role in memories.

The research, led by Dr. Junghyup Suh from the Massachusetts Institute of Technology found the connection between the and the . The entorhinal cortex receives the information from areas around the brain and then passes the information to the hippocampus.

To test this pathway, the researchers used specifically bred mice. These mice had a which allowed the cells in the entorhinal cortex to be disabled by removing from the food the mice were fed.

When mice are presented with a sound and then within 20 seconds given a shock, they quickly learn to associate this sound with the coming shock and freeze in their tracks when the sound is heard. This experiment was conducted on the mice with the disabled entorhinal cortex and researchers discovered that the mutant mice were less likely to react to the sound.

However, when the researchers administered the shock at the same time as the sound, both mice behaved the same. This shows that there is a connection between the connection of time and the entorhinal cortex.

Another experiment used a water maze and a small platform where the mice could find to stop swimming and rest. They were allowed to find the platform and then 30 seconds later placed in the water maze. The were less likely to be able to find the platform even though they had just found it 30 seconds prior. The linking of memories to what was currently happening appeared difficult for these mice.

When it comes to Alzheimer’s disease, patients have difficulty with memory. In Alzheimer’s, the entorhinal cortex is one of the first areas of the brain that is damaged.

Explore further: Electrical stimulation of brain boosts birth of new cells, may improve memory

More information: Entorhinal Cortex Layer III Input to the Hippocampus Is Crucial for Temporal Association Memory, Science DOI: 10.1126/science.1210125

ABSTRACT
Associating temporally discontinuous elements is crucial for the formation of episodic and working memories that depend on the hippocampal-entorhinal network. However, the neural circuits subserving these associations have remained unknown. The layer III inputs of the entorhinal cortex to the hippocampus may contribute to this process. To test this hypothesis, we generated a transgenic mouse in which these inputs are specifically inhibited. The mutant mice displayed significant impairments in spatial working memory tasks and in the encoding phase of trace fear-conditioning. These results indicate a critical role of the entorhinal cortex layer III inputs to the hippocampus in temporal association memory.

Related Stories

Electrical stimulation of brain boosts birth of new cells, may improve memory

September 20, 2011
Stimulating a specific region of the brain leads to the production of new brain cells that enhance memory, according to an animal study in the September 21 issue of The Journal of Neuroscience. The findings show how deep ...

GPS in the head? Rhythmic activity of neurons to code position in space

September 15, 2011
Prof. Dr. Motoharu Yoshida and colleagues from Boston University investigated how the rhythmic activity of nerve cells supports spatial navigation. The research scientists showed that cells in the entorhinal cortex, which ...

Electrical oscillations critical for storing spatial memories in brain: study

April 28, 2011
Biologists at UC San Diego have discovered that electrical oscillations in the brain, long thought to play a role in organizing cognitive functions such as memory, are critically important for the brain to store the information ...

Recommended for you

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.