Electrical stimulation of brain boosts birth of new cells, may improve memory

September 20, 2011, Society for Neuroscience
Mice who received deep brain stimulation (DBS) to a region in the brain called the entorhinal cortex showed an enhanced ability to learn how to navigate to a designated target. This image shows DBS mice (S) spent a greater amount of time (indicated in red) swimming near a submerged landing (dotted circle) compared with non-stimulated mice (NS). Credit: Reprinted with permission: Stone, et al. The Journal of Neuroscience 2011.

Stimulating a specific region of the brain leads to the production of new brain cells that enhance memory, according to an animal study in the September 21 issue of The Journal of Neuroscience. The findings show how deep brain stimulation (DBS) — a clinical intervention that delivers electrical pulses to targeted areas of the brain — may work to improve cognition.

"DBS has been quite effective for the treatment of movement disorders, such as Parkinson's disease, and has recently been explored for treatment of a range of neurologic and psychiatric conditions," said Paul Frankland, PhD, of The Hospital for Sick Children (SickKids), senior author of the study. "These new findings have important clinical implications as they inform potential treatments for humans with memory disorders."

Throughout life, new cells are born in parts of the hippocampus, the brain's learning and memory center. In the new study, Frankland and his colleagues found that one hour of electrical stimulation to the entorhinal cortex — a region that directly communicates with the hippocampus — in adult mice led to a two-fold increase in new cells in the hippocampus. Although the burst of new cells lasted for only about one week, the cells produced during this time window developed normally and made connections with other nearby .

Six weeks later, the researchers evaluated whether the newly integrated cells produced changes in . The authors tested how well the animals learned to navigate onto a landing submerged in a small pool of water. Compared with mice that did not receive the therapy, DBS mice spent more time swimming near the landing, suggesting that stimulation of the entorhinal cortex improved spatial learning.

"To date, the neurobiological basis for the clinical effect of DBS has not been well understood," said Daniel A. Peterson, PhD, of the Rosalind Franklin University of Medicine and Science, an expert on stem cells and brain repair who was unaffiliated with the study. "This study suggests that the stimulation of specific brain circuitry may result in the development of new functional brain in particular brain regions."

In a related preliminary study, researchers led by Andres Lozano, MD, PhD, of Toronto Western Hospital, recently published a Phase I clinical trial showing that DBS of the fornix, a region that also communicates directly with the hippocampus, slows cognitive decline in some people with dementia and other cognitive impairments. "The pro-cognitive effects of in human patients may result from the production of new neurons," Frankland said.

Related Stories

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

210
not rated yet Sep 20, 2011
Indeed:
Any day now, someone will discover that,"....mice that exercised generated more electrical charges in their brains and resisted dementia, depression, and anything with a 'D' better than mice that did not exercise..." Oh, "...and the exercised mice slept better..."
Honestly, we owe the mice of the world one heckuva debt!

word-to-ya-muthas
Karw
not rated yet Sep 22, 2011
How can I stimulate my entorhinal cortex at home? Thx!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.