Neuroscience

AI reveals brain's learning processes

Researchers at the Neural Computation Institute of Ruhr University Bochum, Germany, have constructed a computer model that learns spatial information in a pattern similar to that of rodents.

Psychology & Psychiatry

Why do we remember emotional events better than non-emotional ones?

Most people remember emotional events—like their wedding day—very clearly, but researchers are not sure how the human brain prioritizes emotional events in memory. In a study published on January 16, 2023 in Nature Human ...

Neuroscience

New open-source app for precise brain mapping

The hippocampus is a small, complex, folded brain structure that holds clues to several brain disorders. It is also one of the most difficult-to-map regions of the brain. After developing a successful technique to digitally ...

page 1 from 40

Hippocampus

The hippocampus is a major component of the brains of humans and other mammals. It belongs to the limbic system and plays important roles in long-term memory and spatial navigation. Like the cerebral cortex, with which it is closely associated, it is a paired structure, with mirror-image halves in the left and right sides of the brain. In humans and other primates, the hippocampus is located inside the medial temporal lobe, beneath the cortical surface. Its curved shape reminded early anatomists of the horns of a ram (Cornu Ammonis), or a seahorse. The name, in fact, was taken by the sixteenth century anatomist Julius Caesar Aranzi from the Greek word for seahorse (Greek: ιππος, hippos = horse, καμπος, kampos = sea monster).

In Alzheimer's disease the hippocampus is one of the first regions of the brain to suffer damage; memory problems and disorientation appear among the first symptoms. Damage to the hippocampus can also result from oxygen starvation (hypoxia), encephalitis, or medial temporal lobe epilepsy. People with extensive hippocampal damage may experience amnesia—the inability to form or retain new memories.

In rodents, the hippocampus has been studied extensively as part of the brain system responsible for spatial memory and navigation. Many neurons in the rat and mouse hippocampus respond as place cells: that is, they fire bursts of action potentials when the animal passes through a specific part of its environment. Hippocampal place cells interact extensively with head direction cells, whose activity acts as an inertial compass, and with grid cells in the neighboring entorhinal cortex.

Because of its densely packed layers of neurons, the hippocampus has frequently been used as a model system for studying neurophysiology. The form of neural plasticity known as long-term potentiation (LTP) was first discovered to occur in the hippocampus and has often been studied in this structure. LTP is widely believed to be one of the main neural mechanisms by which memory is stored in the brain.

This text uses material from Wikipedia, licensed under CC BY-SA