Study discovers genetic pathway impacting the spread of cancer cells

May 3, 2012

In a new study from Lawson Health Research Institute, Dr. Joseph Torchia has identified a new genetic pathway influencing the spread of cancer cells. The discovery of this mechanism could lead to new avenues for treatment.

Regular cell division is regulated by methylation, a series of chemical changes. Methylation modifies DNA to ensure cells divide at a healthy, balanced rate. In cancer, the methylation process is unbalanced, causing cells to resist regulation and divide uncontrollably.

Research suggests changes in genetics play a role in this process, yet little is known about the mechanism. In a new study led by Dr. Torchia and his colleagues, a hormone called Transforming Growth Factor Beta (TGF-β) is starting to show the answers. Using genetic sequencing, they analyzed the effects of TGF-β on DNA methylation to reveal a never-before-seen pathway.

When TGF-β comes into contact with a cell it activates the tumor-suppressing gene, which stops the cells from dividing. According to Dr. Torchia's group, ZNF217, a cancer-causing gene, can interfere with this process by binding to the DNA. This prevents the tumour-suppressing genes from activating, and the cells continue to divide.

These results characterize the dynamic processes underlying cell division, suggesting genetic influencers must be balanced to keep under control. Most importantly, they provide hope for new cancer therapies.

"This link between methylation and TGF-β has never been shown before," Dr. Torchia says. "If we understand how methylation is regulated, and identify the machinery that's involved, we may be able to target some of the machinery therapeutically and turn these genes back on to fight the ."

The full study is published in Molecular Cell.

Related Stories

Regulating nuclear signalling in cancer

August 4, 2011

Research findings published recently in Nature Communications describe a completely new way in which TGFβ receptors regulate nuclear signalling. The findings are significant given that this new signalling pathway seems ...

Recommended for you

Study reveals new insight into DNA repair

August 3, 2015

DNA double-strand breaks (DSBs) are the worst possible form of genetic malfunction that can cause cancer and resistance to therapy. New information published this week reveals more about why this occurs and how these breaks ...

Strange circular DNA may offer new way to detect cancers

July 30, 2015

Strange rings of DNA that exist outside chromosomes are distinct to the cell types that mistakenly produced them, researchers have discovered. The finding raises the tantalizing possibility that the rings could be used as ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.