Learning and memory: The role of neo-neurons revealed

Learning and memory: the role of neo-neurons revealed
Section of a mouse brain observed using a fluorescence microscope. The green filaments represent neo-neurons in an organized network. Credit: Institut Pasteur

(Medical Xpress) -- Researchers at the Institut Pasteur and the CNRS have recently identified in mice the role played by neo-neurons formed in the adult brain. By using selective stimulation the researchers were able to show that these neo-neurons increase the ability to learn and memorize difficult cognitive tasks. This newly discovered characteristic of neo-neurons to assimilate complex information could open up new avenues in the treatment of some neurodegenerative diseases. This publication is available online on the Nature Neuroscience journal's website.

The discovery that new neurons could be formed in the created quite a stir in 2003 by debunking the age-old belief that a person is born with a set number of neurons and that any loss of neurons is irreversible. This was all the more incredible considering that the function of these new neurons remained undetermined. That is, until today.

Using mice models the team working under Pierre-Marie Lledo, head of the Laboratory for and Memory (Institut Pasteur/CNRS) recently revealed the role of these neo-neurons formed in the adult brain with respect to . With the help of an experimental approach using optogenetics, developed by this very same team and published in December 2010, the researchers were able to show that when stimulated by a brief flash of light these neo-neurons facilitate both learning and the of complex tasks. This resulted in mice models that were able to memorize information given during the learning activity more quickly and remember exercises even 50 days after experimentation had ended. The study also shows that neo-neurons generated just after birth hold no added advantages as relates to either learning or memory. In this respect it is only the neurons produced by the adult brain that have any considerable significance.

“This study shows that the activity of just a few neurons produced in the adult brain can still have considerable effects on cognitive processes and behavior. Moreover, this work helps to illustrate how the brain assimilates new stimulations seeing as normally electrical activity (which we mimic using flashes of light) is produced within the brain's attention centers”, explains the study's director Pierre-Marie Lledo.

Beyond simply discovering the functional contribution of these neo-neurons, the study has also reaffirmed the clear link between “mood” (defined here by a specific pattern of stimulation) and cerebral activity. It has been shown that curiosity, attentiveness and pleasure all promote the formation of neo-neurons and consequently the acquisition of new cognitive abilities. Conversely, a state of depression is detrimental to the production of new neurons and triggers a vicious cycle which prolongs this state of despondency. These results, and the optogenetics technologies that enabled this study, may prove very useful for devising therapeutic protocols which aim to counter the development of neurologic or psychiatric diseases.

More information: Activation of adult-born neurons facilitates learning and memory, published online on the Nature Neuroscience website, May 13, 2012, Mariana Alonso, et al.

Related Stories

Light-controlled neo-neurons in the brain

Dec 15, 2010

French researchers at the Institut Pasteur in association with the CNRS have just shown, in an experimental model, that newly formed neurons in the adult brain can be stimulated by light. A novel technique ...

Stem cells are good for the brain

Jul 15, 2008

For some years, scientists have been speculating over why stem cells exist in the brain, as brain regeneration is limited. A German team of neuroscientists believe these stem cells help keep the brain healthy and active.

New adult brain cells may be central to lifelong learning

May 23, 2007

The steady formation of new brain cells in adults may represent more than merely a patching up of aging brains, a new study has shown. The new adult brain cells may serve to give the adult brain the same kind of learning ...

Recommended for you

Emotional adjustment following traumatic brain injury

21 hours ago

Life after a traumatic brain injury resulting from a car accident, a bad fall or a neurodegenerative disease changes a person forever. But the injury doesn't solely affect the survivor – the lives of their spouse or partner ...

New ALS associated gene identified using innovative strategy

Oct 22, 2014

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
not rated yet May 23, 2012
This report seems to confirm the role of nutrient chemicals in ecological niches that calibrate intracellular signaling and the development of social niches, which are standardized and controlled by pheromones. Because the molecular biology is the same across species with or without eyes or a central nervous system, olfaction and odor receptors provide a clear evolutionary trail that can be followed from unicellular organisms to insects to humans. The idea that ecological niches and social niches are the determinants of neurogenic niches, like those that develop with exposure to food odors and social odors is one that is important to consider whether we intend to look at pharmacogenomics or to better understand the development of human behavior in the context of epigenetic effects of odors on brain development. I look forward to reading the publication of their results, and to a review of past works by some of these authors.