Mouse study links delayed female sexual maturity to longer lifespan

An intriguing clue to longevity lurks in the sexual maturation timetable of female mammals, Jackson Laboratory researchers and their collaborators report.

Jackson researchers including Research Scientist Rong Yuan, Ph.D., had previously established that mouse strains with lower circulating levels of the hormone IGF1 at age six months live longer than other strains. In research published May 7 in the , Yuan and colleagues report that from strains with lower IGF1 levels also reach at a significantly later age.

"This suggests a genetically regulated tradeoff—delayed reproduction but longer life—that is at least partially mediated by IGF1," Yuan says.

The researchers conclude that IGF1 may co-regulate female and . They showed that mouse strains derived from wild populations carry specific gene variants that delay sexual maturation, and they identified a candidate gene, Nrip1, involved in regulating sexual maturation that may also affect longevity by controlling IGF1 levels.

Yuan notes that researchers in England recently showed that higher levels of IGF1 and other hormones in girls are associated with earlier age of menarche (onset of menstruation). In the newly published research, Yuan and colleagues used the biological benchmark of vaginal patency (VP) as indicator of sexual maturity in mice.

Mice from the inbred strain C57BL/6J, also known as "Black 6," showed 9 percent lower IGF1, 6 percent delayed age of VP and 24 percent extended lifespan compared to a Black 6 substrain that carries a gene variation that increases IGF1.

Using a technique called haplotype mapping, the researchers screened genetic and physiological data for 31 different inbred mouse strains and found genes that regulate female sexual maturation and lifespan, on Chromosomes 4 and 16. They showed that wild-derived share a genetic profile associated with delayed VP and increased longevity, and identified a candidate gene, Nrip1, that controls IGF1 and age of VP.

Related Stories

Stop signal for leukemia stem cells

Aug 23, 2011

There are numerous specialized growth factors that are responsible for cells of different tissues of our body to divide and differentiate when needed. These hormone-like factors bind to matching receptors on the surface of ...

Study finds genes that influence the start of menstruation

May 30, 2009

Two scientists at the Institute for Aging Research of Hebrew SeniorLife are part of an international team of investigators that has identified genes that influence the start of menstruation, a milestone of female reproductive ...

Serotonin plays active role in the sexual preference of mice

Mar 25, 2011

(PhysOrg.com) -- In a recent study published in Nature by Yan Liu and Yun'ai Jiang at Beijing's National Institute of Biological Sciences, the connection between serotonin and sexual preference in mice is presented. Liu a ...

Recommended for you

Scientists discover an on/off switch for aging cells

5 hours ago

(Medical Xpress)—Scientists at the Salk Institute have discovered an on-and-off "switch" in cells that may hold the key to healthy aging. This switch points to a way to encourage healthy cells to keep dividing ...

Gene variant that dramatically reduces 'bad' lipids

Sep 16, 2014

In the first study to emerge from the UK10K Project's cohort of samples from the general public, scientists have identified a rare genetic variant that dramatically reduces levels of certain types of lipids in the blood. ...

New diagnostic method identifies genetic diseases

Sep 16, 2014

People with genetic diseases often have to embark on an odyssey from one doctor to the next. Fewer than half of all patients who are suspected of having a genetic disease actually receive a satisfactory diagnosis. Scientists ...

User comments