Reduction of excess brain activity improves memory in amnestic mild cognitive impairment

May 9, 2012

Research published in the May 10 issue of the journal Neuron, describes a potential new therapeutic approach for improving memory and modifying disease progression in patients with amnestic mild cognitive impairment. The study finds that excess brain activity may be doing more harm than good in some conditions that cause mild cognitive decline and memory impairment.

Elevated activity in specific parts of the hippocampus, a brain region involved in memory, is often seen in disorders associated with an increased risk for Alzheimer's disease. Amnestic (aMCI), where memory is worse than would be expected for a person's age, is one such disorder. "In the case of early aMCI, it has been suggested that the increased hippocampal activation may serve a beneficial function by recruiting additional neural resources to compensate for those that are lost," explains senior study author, Dr. Michela Gallagher, from Johns Hopkins University. "However, animal studies have raised the alternative view that this excess activation may be contributing to memory impairment."

Dr. Gallagher and colleagues tested how a reduction of hippocampal activity would impact human patients with aMCI. The researchers used a low dose of a drug used clinically to treat epilepsy, for the purpose of reducing hippocampal activity in subjects with aMCI to levels that were similar to activity levels in healthy, age-matched subjects in a control group. The researchers found that treatment with the drug improved performance on a . These findings point to the therapeutic potential of reducing excess activation in the hippocampus in aMCI.

The results also have broader significance as elevated activity in the hippocampus is also observed in other conditions that are thought to precede Alzheimer's disease, and may be one of the underlying mechanisms of neurodegeneration. "Apart from a direct role in , there is concern that elevated activity in vulnerable neural networks could be causing additional damage and, possibly, widespread disease-related degeneration that underlies and the conversion to Alzheimer's disease," concludes Dr. Gallagher. "Therefore, reducing the elevated activity in the hippocampus may help to restore memory and protect the brain."

Explore further: Drug improves brain function in condition that leads to Alzheimer's

More information: Bakker et al.: "Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment.", DOI:10.1016/j.neuron.2012.03.023

Related Stories

Recommended for you

Neuro chip records brain cell activity

October 26, 2016

Brain functions are controlled by millions of brain cells. However, in order to understand how the brain controls functions, such as simple reflexes or learning and memory, we must be able to record the activity of large ...

Can a brain-computer interface convert your thoughts to text?

October 25, 2016

Ever wonder what it would be like if a device could decode your thoughts into actual speech or written words? While this might enhance the capabilities of already existing speech interfaces with devices, it could be a potential ...

The current state of psychobiotics

October 25, 2016

Now that we know that gut bacteria can speak to the brain—in ways that affect our mood, our appetite, and even our circadian rhythms—the next challenge for scientists is to control this communication. The science of psychobiotics, ...

After blindness, the adult brain can learn to see again

October 25, 2016

More than 40 million people worldwide are blind, and many of them reach this condition after many years of slow and progressive retinal degeneration. The development of sophisticated prostheses or new light-responsive elements, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.