Team reveals novel way to treat drug-resistant brain tumor cells

June 1, 2012

New research from the University of Wisconsin-Madison explains why the incurable brain cancer, glioblastoma multiforme (GBM), is highly resistant to current chemotherapies.

The study, from the brain-tumor research lab of Dr. John Kuo, assistant professor of neurological surgery and human oncology at UW School of Medicine and Public Health, also reports success for a combination therapy that knocks out signaling of multiple members of the (EGFR) family in cells.

The late U.S. Sen. Edward M. Kennedy died of GBM in 2009. People diagnosed with GBM live on average for only 15 months after diagnosis, even after undergoing aggressive surgery, radiation and chemotherapy. Earlier research from Dr. Kuo and other scientists showed that GBM cancer stem cells escape current treatments and proliferate rapidly to cause .

Several years ago, research suggested that a drug engineered to target EGFR signaling might work against GBM because many brain cancers carried EGFR mutations. Excessive and abnormal EGFR signaling spurs the growth of cancer cells. Although cetuximab, a monoclonal-antibody drug, was successful in clinical trials for patients with lung, colorectal, and head and neck cancers, it failed against GBM.

Research by Dr. Paul Clark, a scientist in Kuo's lab and the study's lead author, shows why. When treatment switches off EGFR activity and should inhibit cancer-cell growth, cancer stem cells compensate by turning on two other EGFR family receptors (ERBB2 and ERBB3) and continue to grow. One of these receptors, ERBB2, is implicated in certain types of chemotherapy-resistant breast cancer. Fortunately, another already approved by the FDA, lapatinib, inhibits ERBB2 activity and signaling by multiple EGFR members.

This study shows that cancer stem-cell growth was markedly inhibited by treatment, which results in combined knockout of multiple EGFR family members.

"This is good news, because these drugs target an important mechanism for the (GBM) to grow so quickly and evade current therapies, and these molecularly targeted drugs are also well-tolerated by patients and have minimal side effects," Dr. Clark said.

Kuo, director of the Comprehensive Brain Tumor Program at UW Health and chair of the Carbone Cancer Center brain tumor group, said that results of several brain cancer clinical trials with these novel drugs and other new strategies are pending or underway.

Explore further: Old drugs find new target for treating brain tumor

Related Stories

Old drugs find new target for treating brain tumor

November 18, 2011

Scientists at the University of California, San Diego School of Medicine and UC San Diego Moores Cancer Center, in collaboration with colleagues in Boston and South Korea, say they have identified a novel gene mutation that ...

New evidence links virus to brain cancer

November 23, 2011

(Medical Xpress) -- Tilting the scales in an ongoing debate, University of Wisconsin-Madison researchers have found new evidence that human cytomegalovirus (HCMV) is associated with glioblastoma multiforme (GBM), the brain ...

How brain tumors invade

December 12, 2011

Scientists have pinpointed a protein that allows brains tumors to invade healthy brain tissue, according to work published this week in the Journal of Experimental Medicine.

The right combination: Overcoming drug resistance in cancer

June 1, 2012

Overactive epidermal growth factor receptor (EGFR) signaling has been linked to the development of cancer. Several drug therapies have been developed to treat these EGFR-associated cancers; however, many patients have developed ...

Recommended for you

New role for an old protein: Cancer causer

September 3, 2015

A protein known to play a role in transporting the molecular contents of normal cells into and out of various intracellular compartments can also turn such cells cancerous by stimulating a key growth-control pathway.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.