Improving human immunity to malaria

August 1, 2012

The deadliest form of malaria is caused the protozoan Plasmodium falciparum. During its life-cycle in human blood, the parasite P. falciparum expresses unique proteins on the surface on infected blood cells.

Antibodies to these proteins are associated with protection from malaria, however, the identity of surface protein(s) that elicit the strongest immune response is unknown.

Dr. James Beeson and colleagues at the Walter and Eliza Hall Institute of Medical Research in Victoria, Australia have developed novel assays with transgenic P. falciparum expressing modified surface proteins, allowing the researchers to quantify to surface proteins among malaria-exposed children and adults.

They found that most of the response to the surface proteins targets a parasite protein known as PfEMP1.

Moreover, the showed that people with PfEMP1-specific antibodies had a reduced risk of malaria symptoms, whereas antibodies to other surface antigens were not associated with protective immunity.

These findings suggest antibodies against PfEMP mediate human immunity to malaria and have implications for future malaria vaccine development.

Explore further: 'Protein microarrays' may reveal new weapons against malaria

More information: Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity, Journal of Clinical Investigation, 2012.

Related Stories

Recommended for you

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

Food-poisoning bacteria may be behind Crohn's disease

October 19, 2016

People who retain a particular bacterium in their gut after a bout of food poisoning may be at an increased risk of developing Crohn's disease later in life, according to a new study led by researchers at McMaster University.

Neurodevelopmental model of Zika may provide rapid answers

October 19, 2016

A newly published study from researchers working in collaboration with the Regenerative Bioscience Center at the University of Georgia demonstrates fetal death and brain damage in early chick embryos similar to microcephaly—a ...

Scientists uncover new facets of Zika-related birth defects

October 17, 2016

In a study that could one day help eliminate the tragic birth defects caused by Zika virus, scientists from the Florida campus of The Scripps Research Institute (TSRI) have elucidated how the virus attacks the brains of newborns, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.