In pilot study, a peptide controls blood sugar in people with congenital hyperinsulinism

A pilot study in adolescents and adults has found that an investigational drug shows promise as the first potential medical treatment for children with the severest type of congenital hyperinsulinism, a rare but potentially devastating disease in which gene mutations cause insulin levels to become dangerously high.

"There is currently no effective medicine for children with the most common and most severe form of hyperinsulinism," said study leader Diva D. De Leon, M.D., a pediatric endocrinologist at The Children's Hospital of Philadelphia. "Our new research shows that this investigational drug, a peptide called exendin-(9-39), controls in people, a very promising result."

The study appeared today online ahead of print in the journal Diabetes.

In congenital hyperinsulinism (HI), mutations disrupt the insulin-secreting in the pancreas. Uncontrolled, excessive thus sharply reduce , a condition called hypoglycemia. If untreated, hypoglycemia may cause irreversible brain damage or death in children. Congenital HI occurs in an estimated one in 50,000 U.S. children, with a higher incidence among Ashkenazic Jews and certain other groups.

The standard treatment for some forms of congenital HI is diazoxide, a drug that controls insulin secretion by opening in beta cells. However, this drug does not work in the most common types of HI, in which mutations prevent these potassium channels from forming.

When abnormal beta cells occur only in a discrete portion of the pancreas, precise surgery on the tiny organ can remove the lesion and cure HI. The Congenital Hyperinsulinism Center at The Children's Hospital of Philadelphia is a world leader in diagnosing such lesions and performing the curative surgery on newborns.

However, in roughly half of congenital HI cases, are diffused through the pancreas, and surgeons must remove nearly the entire pancreas. This leaves the majority of patients at high risk of developing diabetes.

The current study, which builds on previous research by De Leon and colleagues in animals, uses exendin-(9-39), which blocks the action of a hormone receptor, glucagon-like peptide-1 (GLP-1), in beta cells. The GLP-1 receptor is currently the target of drugs that treat diabetes, using the opposite effect from that investigated in this HI study.

The current pilot study included nine subjects, aged 15 to 47 years old, who had hyperinsulinism caused by mutations in potassium channels. None were being treated for HI at the time of the study, but all were at risk of hypoglycemia during periods of fasting.

In all nine subjects, the drug controlled blood glucose levels during fasting. Exendin also controlled in cell studies of beta cells taken from newborns with HI. The current research did not focus on the biological mechanisms that occurred, but De Leon said the results are encouraging enough to progress to a clinical study in children with HI over the next year.

More information: "The GLP-1 Receptor Antagonist Exendin-(9-39) Elevates Blood Fasting Glucose Levels in Congenital Hyperinsulinism due to Inactivating Mutations in the ATP-sensitive Potassium Channel," Diabetes, published online Aug.1, 2012, to appear in print, October 2012. doi: 10.2337/db12-0166

Related Stories

Recommended for you

Faster heart rate linked to diabetes risk

date 7 hours ago

An association between resting heart rate and diabetes suggests that heart rate measures could identify individuals with a higher future risk of diabetes, according to an international team of researchers.

EBV co-infection may boost malaria mortality in childhood

date 22 hours ago

Many people who live in sub-Saharan Africa develop a natural immunity to malaria, through repeated exposure to Plasmodium parasites. Even so, the disease kills close to half a million children per year, according ...

Three important things you didn't know about diabetes

date May 21, 2015

When we think of diabetes, we tend to think of rich people with poor lifestyles. A chronic disease linked with obesity, heart disease and worse outcomes for some infectious diseases, diabetes tends to be ...

Changes observed in HbA1c during ramadan

date May 20, 2015

(HealthDay)—For patients with type 2 diabetes, during Ramadan, the greatest change among metabolic parameters is seen for glycemia, according to a study published online May 13 in the Journal of Diabetes In ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.