Success of engineered tissue depends on where it's grown

by Anne Trafton

Tissue implants made of cells grown on a sponge-like scaffold have been shown in clinical trials to help heal arteries scarred by atherosclerosis and other vascular diseases. However, it has been unclear why some implants work better than others.

MIT researchers led by Elazer Edelman, the Thomas D. and Virginia W. Cabot Professor of Health Sciences and Technology, have now shown that implanted cells' therapeutic properties depend on their shape, which is determined by the type of on which they are grown. The work could allow scientists to develop even more effective implants and also target many other diseases, including cancer.

"The goal is to design a material that can engineer the cells to release whatever we think is most appropriate to fight a specific disease. Then we can implant the cells and use them as an ," says Laura Indolfi, a postdoc in Edelman's lab and lead author of a paper on the research recently published online in the journal .

Aaron Baker, a former postdoc in Edelman's lab and now an assistant professor at the University of Texas at Austin, is also an author of the paper.

Shape matters

For the past 20 years, Edelman has been working on using endothelial cells grown on scaffolds made of collagen as to treat blood vessel damage. Endothelial cells line the blood vessels and regulate important process such as and inflammation by releasing molecules such as chemokines, small proteins that carry messages between cells.

Several of the devices have been tested in clinical trials to treat blood vessel damage; in the new Biomaterials study, Edelman and Indolfi set out to determine what makes one such tissue scaffold more effective than another. In particular, they were interested in comparing grown on flat surfaces and those grown on more porous, three-dimensional scaffolds. The cells grown on 3-D structures tended to be more effective at repairing damage and suppressing inflammation.

The researchers found that cells grown on a flat surface take on a round shape in which the cells' structural components form a ring around the perimeter of the cell. However, when cells are grown on a scaffold with surfaces of contact whose dimensions are similar in size to the cells, they mold to the curved surfaces, assuming a more elongated shape. In those cells, the structural elements — made of bundles of the protein actin — run parallel to each other.

Those shapes determine what types of chemokines the cells secrete once implanted into the body. In this study, the researchers focused on a chemokine known as MCP1, which recruits inflammatory cells called monocytes.

They found that the architecture of the cytoskeleton appears to determine whether or not the cell turns on the inflammatory pathway that produces MCP1. The elongated cells grown on porous surfaces produced eight times less of this inflammatory chemokine than cells grown on a flat surface, and recruited five times fewer monocytes than cells grown on a flat surface. This helps the tissue implants to suppress inflammation in damaged blood vessels.

The researchers also identified biomarkers that correlate the cells' shape, chemokine secretion and behavior. One such parameter is the production of a focal adhesion protein, which helps cells to stick to surfaces. In cells grown on a , this adhesion protein, known as vinculin, accumulates around the edges of the cell. However, in cells grown on a 3-D surface, the protein is evenly distributed throughout the cell. These distribution patterns serve as molecular cues to inhibit or activate the pathway that recruits monocytes.

Precise control

The findings could help scientists manipulate their scaffolds to tailor cells to specific applications. One goal is using implanted cells to recruit other body cells that will do a particular task, such as inducing stem cells to differentiate into a certain type of cell. "By designing the matrix before we seed the cells, we can engineer which factors they are going to secrete," Indolfi says.

The work should also help researchers improve on existing tissue-engineered devices and test new ones, Edelman says. "Without this kind of understanding, we can't extend successful technologies to the next generation," he says.

Related Stories

Scientists discover cancer-fighting role for cells

Jan 19, 2011

MIT scientists have discovered that cells lining the blood vessels secrete molecules that suppress tumor growth and keep cancer cells from invading other tissues, a finding that could lead to a new way to treat cancer.

Recommended for you

Growing a blood vessel in a week

13 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

16 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments