Macrophage accumulation of triglycerides yields insights into atherosclerosis

October 1, 2012

A research report appearing in the Journal of Leukocyte Biology helps explain how specific immune cells, called macrophages, accumulate triglycerides to support their function. Because a characteristic finding in atherosclerosis is the accumulation of fat in macrophages in the arterial wall, understanding how macrophages accumulate triglycerides may lead to new approaches toward slowing or stopping the development of atherosclerosis.

"Activation of macrophages leads to the accumulation of triglycerides in macrophages by multiple pathways that may have beneficial effects in host defense but could contribute to the accelerated atherosclerosis that occurs in and inflammatory disease," said Kenneth R. Feingold, M.D., a researcher involved in the work from the Metabolism Section at the Veterans Affairs Medical Center in San Francisco, California. "By understanding the pathways that lead to this lipid accumulation in activated macrophages one might be able to manipulate these pathways to stimulate to improve host defense or inhibit these pathways to reduce atherosclerosis depending on the clinical circumstances."

To make this discovery, scientists conducted using a macrophage cell line, or mouse peritoneal macrophages. These cells were stimulated with various substances and the effect on macrophage glucose and fat metabolism was determined. They found that activated macrophages are more efficient at taking up glucose and use this glucose to synthesize fat. They also found that activated macrophages are more efficient at taking up fatty acids and use the to synthesize triglycerides. Finally, the breakdown of fat (triglycerides) is decreased in activated macrophages. Together these changes in macrophage metabolism lead to the accumulation of fat inside the macrophage itself. The fact that multiple pathways are altered suggests that the accumulation of fat in activated macrophages is important to the function of activated macrophages.

"Drilling down to understand exactly how triglycerides are used by our body should ultimately help us better treatments for diseases such as atherosclerosis," said John Wherry, Ph.D., Deputy Editor of the . "This report gives us important insights into how triglycerides accumulate in key involved in atherosclerosis and cardiovascular disease."

Explore further: Dendritic cell subtype protects against atherosclerosis

More information: Heather Parker, Mike Dragunow, Mark B. Hampton, Anthony J. Kettle, and Christine C. Winterbourn. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J Leukoc Biol October 2012, 92:841-849; doi:10.1189/jlb.1211601

Related Stories

Dendritic cell subtype protects against atherosclerosis

November 10, 2011

Atherosclerosis, commonly referred to as "hardening of the arteries," is a major risk factor for heart attack and stroke. The cause of atherosclerosis is not well understood but, for some time, chronic inflammatory immune ...

Researchers discover new culprit in atherosclerosis

January 9, 2012

A new study by NYU Langone Medical Center researchers identified a new culprit that leads to atherosclerosis, the accumulation of fat and cholesterol that hardens into plaque and narrows arteries. The research, published ...

New way of fighting high cholesterol upends assumptions

September 27, 2012

Atherosclerosis – the hardening of arteries that is a primary cause of cardiovascular disease and death – has long been presumed to be the fateful consequence of complicated interactions between overabundant cholesterol ...

Recommended for you

New findings offer hope for diabetic wound healing

November 23, 2015

University of Notre Dame researchers have discovered a compound that accelerates diabetic wound healing, which may open the door to new treatment strategies. Non-healing chronic wounds are a major complication of diabetes, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.