Space station and space flight gravity influence immune system development

October 15, 2012
Space station and space flight gravity influence immune system development

New research findings recently published in The FASEB Journal, show that immune system development is affected by gravity changes, as reported by researchers from the University of Lorraine and University of Luxembourg. Astronauts are exposed to stresses, during launch and landing, which disrupts their body's natural defenses against infection. Changes to the immune system need to be investigated before astronauts undergo longer space missions.

Researchers looked at how is affected when animal development occurs onboard a space station and which part of space travel has the greatest impact on antibodies, which are the proteins that the immune system uses to protect us from diseases. To do this, they sent Iberian ribbed newt, Pleurodeles waltl, embryos to the before the newt embryos started to develop IgM antibody, which is also found in humans and is the largest antibody that circulates in blood.

Upon landing, they were compared with embryos grown on Earth. Antibody mRNAs in space and earth newts were different. The IgM antibody was doubled at landing. Findings show that gravity changes during development affect antibodies and the regeneration of , which are important in defending the body against infectious diseases. Spaceflight did not affect newt development nor did it cause inflammation.

Scientists believe that these changes could also occur in humans, and require further experimentation to see how gravity can influence the immune system and white blood cell function, which play a role in many human diseases including cancer and diabetes.

Explore further: Scientists discover enzyme that could slow part of the aging process in astronauts -- and the elderly

More information: Huin-Schohn C, et al. Gravity changes during animal development affect IgM heavy-chain transcription and probably lymphopoiesis. The FASEB Journal article fj.12-217547. E-publication, September 19, 2012.

Related Stories

Recommended for you

Four gut bacteria decrease asthma risk in infants

September 30, 2015

New research by scientists at UBC and BC Children's Hospital finds that infants can be protected from getting asthma if they acquire four types of gut bacteria by three months of age. More than 300 families from across Canada ...

Flu infection reveals many paths to immune response

September 28, 2015

A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological ...

Immune cells may help fight against obesity

September 15, 2015

While a healthy lifestyle and "good genes" are known to help prevent obesity, new research published on September 15 in Immunity indicates that certain aspects of the immune system may also play an important role. In the ...

The Achilles' heel of HIV

September 8, 2015

Researchers at the University of Bonn have discovered how cells in the body can detect the genetic material of so-called retroviruses. The pathogen of the immunodeficiency disease AIDS, the HI-1 virus, also belongs to this ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.