Researchers report islet cell advancement increases impact on transplantation

A study published in the current issue of Cell Transplantation (21:8), now freely available on-line, reports that a team of researchers in South Korea have successfully engineered islet cell clusters (ICCs) that will improve pancreatic islet transplantation and offer promise for curing diabetes mellitus.

Carried out by collaborating researchers at three universities in Seoul, Korea, the new process of creating ICCs included delivering a gene to single islet cells that increased their glucose sensitivity; reducing the size of cells in the cluster and; modifying the ICCs' surface with a poly-lipid to help prevent immune reactions. According to the researchers, their work is potentially far-reaching by helping to overcome the shortage of islet cells with respect to transplantation and reducing the need for immunosuppressant regimes, an important factor in eliminating the possible adverse impact of transplantation.

"Transplantation of isolated has shown tremendous potential for curing patients with ," said study co-author Dong Yun Lee of Hanyang University's Department of Bioengineering. "But transplanted islet cells face challenges, such as hypoxic (low oxygen) conditions and the host's aggressive immune reactions. Accordingly, we developed a clinically adaptable way to create islet cell clusters engineered to overcome these challenges."

They noted that encapsulated islets incurred cell death due to hypoxia caused by the relatively large size of the capsule and the impurity of the biomaterials from which they were made. Hypoxia has also caused the early loss of graft function. The research team hypothesized that when islets of smaller size were grouped into clusters, they would be less susceptible to , ischemia and starvation because of adequate oxygen and nutrient supplies in the core of the islets.

To help prevent cell death by improving the cell's regulation of , and to help prevent programmed cell death (apoptosis), the researchers created a molecularly engineered (PEG-Sp-Ex-4) regimen to coat the ICCs. The ICCs were also accompanied by factors to counter immune rejection.

"We demonstrated that the viability of the ICCs was significantly higher than that of single, large islets when cultured for 25 days," said Dr. Lee. "When applied in human-to-human , the use of this strategy could contribute to higher islet cells success rates when transplanting to treat diabetes mellitus."

More information: Yook, S.; Jeong, J-H.; Jung, Y. S.; Hong, S. W.; Im, B. H.; Seo, J. W.; Park, J. B.; Lee, M.; Ahn, C-H.; Lee, H.; Lee, D. Y.; Byun, Y. Molecularly Engineered Islet Cell Clusters for Diabetes Mellitus Treatment Cell Transplant. 21(8):1775-1789; 2012. www.ingentaconnect.com/content/cog/ct/

add to favorites email to friend print save as pdf

Related Stories

Preventing pancreatic islet loss after transplantation

Feb 02, 2010

Although transplantation of pancreatic islets is an attractive way to treat type 1 diabetes, early islet loss soon after transplantation has limited its clinical use. By studying islet transplantation in a mouse model of ...

The new source of islet cells

Oct 25, 2007

The shortage of islet cells limits the development of islet transplantation. One new approach was reported in the October 21 issue of the World Journal of Gastroenterology because of its great significance in enhancing the ou ...

Promising advances in islet cell transplants for diabetes

Jun 09, 2008

University of Illinois at Chicago researchers have modified the procedure for islet cell transplantation and achieved insulin independence in diabetes patients with fewer but better-functioning pancreatic islet cells.

Recommended for you

New biomedical implants accelerate bone healing

9 minutes ago

A major success in developing new biomedical implants with the ability to accelerate bone healing has been reported by a group of scientists from the Department of Restorative Dentistry, University of Malaya. ...

A new way to prevent the spread of devastating diseases

17 hours ago

For decades, researchers have tried to develop broadly effective vaccines to prevent the spread of illnesses such as HIV, malaria, and tuberculosis. While limited progress has been made along these lines, ...

New molecule allows for increase in stem cell transplants

17 hours ago

Investigators from the Institute for Research in Immunology and Cancer (IRIC) at the Université de Montréal have just published, in the prestigious magazine Science, the announcement of the discovery of a new molecule, the fi ...

Team explores STXBP5 gene and its role in blood clotting

20 hours ago

Two independent groups of researchers led by Sidney (Wally) Whiteheart, PhD, of the University of Kentucky, and Charles Lowenstein, MD, of the University of Rochester, have published important studies exploring the role that ...

User comments